Syntactic and Semantic Control
of Large Language Models
via Sequential Monte Carlo

Joao Loula*' Benjamin LeBrun*° Li Du*¢

Ben Lipkin' Clemente Pasti? Gabriel Grand' Tianyu Liu?

Yahya Emara? Marjorie Freedman® Jason Eisner® Ryan Cotterell?

Vikash Mansinghka*' Alexander K. Lew*"” Tim Vieira*? Timothy J. O’Donnell#3%°
'"MIT 2ETH Zurich *McGill “Canada CIFAR Al Chair °Mila ®Johns Hopkins “Yale 8ISl
*co-first authorship, *co-senior authorship

Many signals we can use to guide LMs

Many signals we can use to guide LMs

e Code:

o Static analysis

LSP

diagnostics

definition

def (context):
server = LSPDiagnosticServer(“python”)

diagnostics = server. (code)

errors = [d for d in diagnostics
if d["severity"] = 1]
1t errors:
return 0

return 1

Many signals we can use to guide LMs

e Code:
tplxtlib O PyTorch
. : : def (context): ma
Static anaIySIS test_code = """import torch
list_of_tensors = [torch. (3),
* Run tests check for errors torch. randn(3).
torch. (3)]
try:
(test_code + output)
return 1

except Exception as e:
return @

Many signals we can use to guide LMs

e Code:

« Static analysis def (context):
with (“task.pddl”, “w”) as f:

 Run tests check for errors f. (task. (goal=output))

proc = subprocess.run([
* Robotics: Simulate a plan and check goal “validate”, “domain.pddl”,
“task.pddl”, “plan.pddl”])
if proc.returncode = 0:
return 0
return 1

Many signals we can use to guide LMs

 Code: L U

o Static analysis

def (context):
e Run tests check for errors state = SmilesParser. (context)
for atom 1n state.mol.atoms:
» Robotics: Simulate a plan and check goal ' "0} >milesParser. (
atom, state):
. _ return @
 Chemistry: Compute molecular properties return SmilesParser. (

state.mol, state)

Many signals we can use to guide LMs

Signals vary along several dimensions

 Code:
o Static analysis
* Run tests check for errors
* Robotics: Simulate a plan and check goal

 Chemistry: Compute molecular properties

Many signals we can use to guide LMs

Signals vary along several dimensions

e Code:

continuous/
e Robotics:

 Chemistry: Compute molecular properties

Many signals we can use to guide LMs

Signals vary along several dimensions

e Code:

o Static analysis
continuous/binary

« Robotics: cheap/

 Chemistry:

Many signals we can use to guide LMs

Signals vary along several dimensions

e Code:

» Static analysis continuous/binary

cheap/expensive

* Robotics: token-by-token/

 Chemistry: Compute molecular properties

Signals as potentials ¢

Generalizing verifiers, scorers, reward models...

@(x) . context — R

IS\ e
A &
def (context):) o
server = LSPDiagnosticServer(“python”) i {5§
diagnostics = server. (code)
errors = [d for d in diagnostics if d["severity"] = 1]

if errors:

return 6

return 0

€5nmww Q@ e

1
TensorFlow I':I pCIthIS

(context): matplxtlib O PyTorch
test_code = """import torch

[torch.

def

(3),

list_of_tensors =
(3),
(3)]

torch.

torch.

({4101

try:
(test_code + output)

return 1

except Exception as e:
return @

def

(context):
state = SmilesParser.

def

(c

for atom in state.mol.atoms:
it not SmilesParser.

atom, state):
return @
return SmilesParser.
state.mol, state)

BLOCK
(J

(context):
(“task.pddl”, “w”) as f:

(goal=output))

with
f. (task.

proc = subprocess.run([
“validate”, “domain.pddl”,

“task.pddl”, “plan.pddl”])
if proc.returncode = 0:
return @
return 1

ontext)

Key idea: controlled generation as inference

Key idea: controlled generation as inference
LM takes in a prompt

Prompt: How do | stack a list "tensors" of pytorch tensors?

Slide adapted from Alex Lew

Key idea: controlled generation as inference

LM takes in a prompt, acts as a prior p,,,

Prompt: How do | stack a list "tensors" of pytorch tensors?

Pry(X)
_ teNSOrs torch.tensor(tensors)

In python, we can stack...

torch.stack(tensors) torch.stack(*tensors)

torch.tensor(*tensors, axis=1)

np.stack(tensors, axis=0)

torch.stack(tensors, dim=0)

all strings x
Slide adapted from Alex Lew

Key idea: controlled generation as inference

LM takes in a prompt, acts as a prior p; ,,, and ¢s as likelihoods

Prompt: How do | stack a list "tensors" of pytorch tensors?

X Prf() Piinger(X)
_ teNSOrS torch.tensor(tensors)
¢linter =0
for a list of tensors, we have to...
def (context): ¢ =0
server = LSPDiagnosticServer(“python”) Drinter = 0 in python, we can stack...
diagnostics = server. (code) sure, let me see...

errors = [d for d in diagnostics if
d["severity"] = 1]

if errors: LsP np.stack(tensors, axis=0) torch.tensor(*tensors, axis=1)
return 0 JS | e ﬂ .
torch.stack(tensors, dim=0)
return 1 A . D
—\ >
</ \ g all strings x

Slide adapted from Alex Lew

Key idea: controlled generation as inference

LM takes in a prompt, acts as a prior p; ,,, and ¢s as likelihoods

Prompt: How do | stack a list "tensors" of pytorch tensors?

X Prm (x)¢linter(x)¢test(‘x) b =0
_ ib’e“” =0 torch.teﬁgor(tensors)
ensors

¢lin er — 0
def (context): for a list of tensgrs, we have to...
test_code = """import torch G =0
list of tensors = Diinter = 0 in python, we can stack...
[torch. (3), torch. (3), sure, let me see...
torch. (3)]
tf‘yZ ¢t S 0 ¢test =0 |
(test_code + output) np.stack(tensors, axis=0) torch.tensor(*tensors, axis=1)

return 1
except Exception as e: ® tearn

return 0 .

TensorFlow I':I pCII‘IdCIS

all strings x
matplktlib O PyTorch

Slide adapted from Alex Lew

Current approaches to controlled generation have major flaws

Current approaches to controlled generation have major flaws

Sample-rank (best-of-N,
rejection sampling etc.)

Popular approach 1: Sample-rank

e.g. best-of-n with a reward model (Nakano et al., 2021; Krishna et al., 2022; Zhou et al., 2023; Gui et al., 2024; Mudgal et al.,
2024; Ichihara et al., 2025), filtering with a verifier (Olausson et al., 2023; Chen et al. 2024; Lightman et al., 2024; Xin et al., 2024)

Popular approach 1: Sample-rank

Generations

torch.stack((tensors)
torch.tensor(tensors)

torch.stack(tensors)

e.g. best-of-n with a reward model (Nakano et al., 2021; Krishna et al., 2022; Zhou et al., 2023; Gui et al., 2024; Mudgal et al.,
2024; Ichihara et al., 2025), filtering with a verifier (Olausson et al., 2023; Chen et al. 2024; Lightman et al., 2024; Xin et al., 2024)

Popular approach 1: Sample-rank

Generations Potential Scores

SyntaxError:
mismatched
parentheses

a = torch.stack((tensors)

a = torch.tensor(tensors)

ValueError: only one
a = torch.stack(tensors) y
element tensors

can be converted to
Python scalars

e.g. best-of-n with a reward model (Nakano et al., 2021; Krishna et al., 2022; Zhou et al., 2023; Gui et al., 2024; Mudgal et al.,
2024; Ichihara et al., 2025), filtering with a verifier (Olausson et al., 2023; Chen et al. 2024; Lightman et al., 2024; Xin et al., 2024)

Popular approach 1: Sample-rank

Generations Potential Scores Output

SyntaxError:
mismatched
parentheses

a = torch.stack((tensors)

a = torch.tensor(tensors) 55 a = torch.stack(tensors)

ValueError: only one
a = torch.stack(tensors) y
element tensors

can be converted to
Python scalars

e.g. best-of-n with a reward model (Nakano et al., 2021; Krishna et al., 2022; Zhou et al., 2023; Gui et al., 2024; Mudgal et al.,
2024; Ichihara et al., 2025), filtering with a verifier (Olausson et al., 2023; Chen et al. 2024; Lightman et al., 2024; Xin et al., 2024)

Current approaches to controlled generation have major flaws

Sample-rank

Current approaches to controlled generation have major flaws

Sample-rank

How many potential calls? ‘ samples ‘

Current approaches to controlled generation have major flaws

Sample-rank

Samples from the right
distribution?

Sample-rank samples from the correct distribution
Importance sampling tells us that...

Sample-rank samples from the correct distribution
Importance sampling tells us that...

Pry(X)

/

Distribution we sample from

Sample-rank samples from the correct distribution
Importance sampling tells us that...

Pry(X)p(x)
/ AN

Distribution we sample from Function we score by

Sample-rank samples from the correct distribution
Importance sampling tells us that...

istribution e — 2(X) & Py (X)P(x)

/ N

Distribution we sample from Function we score by

Current approaches to controlled generation have major flaws

Sample-rank

Samples from the right E
distribution? : 8(x) o prp(X)p(x)

Current approaches to controlled generation have major flaws

Sample-rank
Samples from the right
distribution? g(x) > pLM(X)¢(X)
How many potential calls? ‘ samples ‘

Sample-rank needs a lot of LM calls

g(x) & py(X)P(x)

Sample-rank needs a lot of LM calls

g(x) & py(X)P(x)

Required # LM samples: e Pri811pry)

(Chatterjee and Diaconis, 2018)

Current approaches to controlled generation have major flaws

Sample-rank
Samples from the right
distribution? g(x) > pLM(X)¢(X)
How many potential calls? ‘ samples ‘

How many LM calis? ' X CXP DKL(g ‘ ‘ pLM)

Current approaches to controlled generation have major flaws

Sample-rank E Locally Constrained Decoding E
P ' (token masking, logit biasing etc.) :
Samples from the right) o V)b (x
distribution? g(x) & ppp(x)P(x)
How many potential calls? ‘ samples ‘

How many LM calls? ~ exp Dy (g | | pras)

Popular approach 2: Locally Constrained Decoding

(e.g., OpenAl 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

Popular approach 2: Locally Constrained Decoding
At each step:

a = torch.

(e.g., OpenAl 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

Popular approach 2: Locally Constrained Decoding
At each step: get next token probs

tensor(

a = torch.
stack(

(e.g., OpenAl 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials

tensor(

stack(

a = torch.

(e.g., OpenAl 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials, normalize

tensor(

stack(

a = torch.

(e.g., OpenAl 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

Popular approach 2: Locally Constrained Decoding

At each step: get next token probs, multiply potentials, normalize, sample

tensor()
a = torch. ~
stack(
— > fabﬂtensor(}
(
> J

(e.g., OpenAl 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

Popular approach 2: Locally Constrained Decoding

At each step: get next token probs, multiply potentials, normalize, sample

tensors A

(
\— >5¥§£tensors}
-
T

a = torch.tensor(

(e.g., OpenAl 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

Popular approach 2: Locally Constrained Decoding

At each step: get next token probs, multiply potentials, normalize, sample

H—)

a = torch.tensor(tensors ~)
\r > By) 1
, J

(e.g., OpenAl 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

Popular approach 2: Locally Constrained Decoding

At each step: get next token probs, multiply potentials, normalize, sample

EOS)
a = torch.tensor(tensors)
\n
, NN {Eos }
ﬁ_
\n\n)

(e.g., OpenAl 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

Current approaches to controlled generation have major flaws

Sample-rank Locally-Constrained Decoding
Samples from the right 1) o D (x
distribution? g() pLM()¢()
How many potential calls? ‘ samples ‘
How many LM calls? ~ exp Dy (g | | pra) E
b e e mmmmmmmmmmmm——————— 3

Current approaches to controlled generation have major flaws

Sample-rank Locally-Constrained Decoding
Samples from the right 1) o D (x
distribution? g() pLM()¢()
How many potential calls? ‘ samples ‘
How many LM calls? ~ exp Dy (g | | pra) : 1 E
b e e mmmmmmmmmmmm——————— I’

Current approaches to controlled generation have major flaws

Sample-rank Locally-Constrained Decoding
Samples from the right 1) o VD (x
distribution? g() pLM()¢()
How many potential calls? ‘ samples ‘ E
How many LM calls? ~ exp Dy (2| | pry) 1

Locally Constrained Decoding calls potentials ~100k times per step

tensors \
a = torch.tensor((
\— EE{’censors]
+ :
we run the potentials
T on full token vocabulary

at each step!

(e.g., Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

Current approaches to controlled generation have major flaws

Sample-rank Locally-Constrained Decoding
Samples from the ight | g(x) ox pyp(N)(x)
How many potential calls? ‘ samples ‘ E | vocabulary | X | x| -;
““““““““““““ S O Y

Current approaches to controlled generation have major flaws

Sample-rank Locally-Constrained Decoding
Samples from the right Y) o Vb (x E E
distribution? 8(x) & ppy(X)(x) : :
How many potential calls? ‘ samples ‘ ‘ Vocabulary ‘ X ‘ X ‘

How many LM calls? ~ EXP DKL(g ‘ ‘ pLM) 1

Locally Constrained Decoding samples from the wrong distribution

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by...”

Locally Constrained Decoding samples from the wrong distribution

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by...”

1f

torch
. tensors

sure

np

Locally Constrained Decoding samples from the wrong distribution

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by...”

1f

torch
. tensors

Stufe—

np

Locally Constrained Decoding samples from the wrong distribution

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by...”

1T \

torch
. tensors > o if
StHre—

np y

Locally Constrained Decoding samples from the wrong distribution

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by...”

you
1f

we
. the

tensors

torch

Locally Constrained Decoding samples from the wrong distribution

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by...”

Vo4

we—

. the

1f

tensors

torch

Locally Constrained Decoding samples from the wrong distribution

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by...”

| o)
1T
we—
. the >5¥§ tensors
tensors
torch)

Locally Constrained Decoding samples from the wrong distribution

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by...”

1f tensors

Locally Constrained Decoding samples from the wrong distribution

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by...”

| | list A
1f tensors 1in
tensors
. torch >5¥§ torch
3
range y

Locally Constrained Decoding samples from the wrong distribution

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by...”

1f tensors 1n torch

Locally Constrained Decoding samples from the wrong distribution

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by...”

tensor A
1f tensors in torch.
cat
. NN >5¥§ tensor
stack
from)

Locally Constrained Decoding samples from the wrong distribution

Distribution has the right support, but overrepresents greedy samples

try:
1f tensors i1n torch.tensor.. torch.stack(tensors)
except..

for 1 in torch.stack(tensors):.. with torch.cuda.device(‘0Q’):..

Locally Constrained Decoding samples from the wrong distribution

Distribution has the right support, but overrepresents greedy samples

try:
1f tensors i1n torch.tensor.. torch.stack(tensors)
except..

for 1 in torch.stack(tensors):.. with torch.cuda.device(‘0Q’):..

| x|

Pr(X: [X)p(x; [X)
[(x) = | [PR 7
¢(X) H Zx, PrvX | X)X | xp)

Current approaches to controlled generation have major flaws

Sample-rank Locally Constrained Decoding
Samples from the right g(x) X P (x) ¢(x) E 1(x) = llx—ll JJCAD SN ICAD 9 E
distribution? LM @ Y P X)h(xg) W
How many potential calls? ‘ samples ‘ | vocabulary | X | x|

How many LM calls? ~ EXP DKL(g ‘ ‘ pLM) 1

Better approaches to controlled generation

Locally-Constrained

Sample-rank Decoding

x|

ST PO x e x)
Output distribution 8(x) & ppp(x)P(x) lp(x) = H S P X X
potential calls # LM samples | vocabulary | X | x|

LM samples ~ exp Dy (g || pry) 1

Better approaches to controlled generation

Locally-Constrained

- 2
Sample-rank Decoding :
X x| x_ (x| x N I
Output distribution g(x) x pry)PX) | Lw=T] = (p('xlx)"’)(¢f('x,|<i<[) : :
potential calls # LM samples | vocabulary | X | x|

LM samples ~ exp Dy (g || pry) 1

Correcting the output distribution

Correcting the output distribution

Use weights to discount bad samples and emphasize good ones

Correcting the output distribution

Use weights to discount bad samples and emphasize good ones

Vo4

we—

. the

1f

tensors

torch

Correcting the output distribution

Use weights to discount bad samples and emphasize good ones

o \

. the swx) =+

tensors

1f

torch)

Correcting the output distribution

Use weights to discount bad samples and emphasize good ones

Vo \

. the >wt(x) = 4+

tensors

1f

torch)

| x|

L4 (X) H Wix) = pry(X)P(x)

Better approaches to controlled generation

Locally-Constrained

- 2
Sample-rank Decoding :
I x| x_)p(x, | x . I
Output distribution g(xX) x pry0)Px) | w=T] = (p(|x|x)¢)(¢f('x,|<i<t) : g(x) & pra(X)p(x) :
potential calls # LM samples | vocabulary | X | x|

LM samples ~ exp Dy (g || pry) 1

Better approaches to controlled generation

Locally-Constrained

Sample-rank Decoding

x|

Output distribution g(xX) x pry(0)P(x) | w=]] = (;<LX|;¢)(;<LX|£ -8 (X) & ppy(x0)P(x)
potential calls # LM samples | vocabulary | X | x| ! :

LM samples ~ exp Dy (g || pry) 1

Reducing calls to the potentials

Split potentials into (efficient) and @ (expensive)

exp

Reducing calls to the potentials

Split potentials into (efficient) and @, (expensive)

. grammars, finite-state machines, regular expressions, reward models...

Reducing calls to the potentials

Split potentials into (efficient) and @, _(expensive)

XPp

. grammars, finite-state machines, regular expressions, reward models...

(I)exp: executing test cases, running simulations, LM as judge...

Reducing calls to the potentials

Split potentials into (efficient) and @, _(expensive)

XPp

. grammars, finite-state machines, regular expressions, reward models...

(I)exp: executing test cases, running simulations, LM as judge...

Sample x from Locally Constrained Decoding using only

Reducing calls to the potentials

Split potentials into (efficient) and @, _(expensive)

XPp

. grammars, finite-state machines, regular expressions, reward models...

(I)exp: executing test cases, running simulations, LM as judge...

Sample x from Locally Constrained Decoding using only

Weights correct for greediness at every step and for @ at the last step

exp

Better approaches to controlled generation

Sample-rank Locally—Con.stralned 2
Decoding
Output distribution g(x) & pp (D) | 1w =11 = (;<LX|;¢)(;<LX|£ - | 8(0) o pry(X)Pp(x)
. exé)# LM samples .
potential calls # LM samples | vocabulary | X | x| E . # LM samples X E
' | vocabulary | X | x| &
LM samples ~ exp D (g1 | pry)]

Better approaches to controlled generation

Syntactic and

Sample-rank Locally—Con.stralned : Semantic :
Decoding : Importance !
t _Sampling (Ours)_
Output distribution 8(X) & pyy()PX) | jyw = [[Lo 3 1x) 8(x) & ppy(x)p(x)

2 P X)P | X)

® : # LM samples

exp

potential calls # LM samples | vocabulary | X | x| . # LM samples X

| vocabulary | X | x|

LM samples ~ exp Dy (g || pry) 1

Better approaches to controlled generation

Syntactic and
Locally-Constrained Semantic
Sample-rank .
Decoding Importance

Sampling (Ours)

x|

Output distribution g(xX) x pry(0)P(x) | w=]] = (;(LX|;¢)(;(LX|£) g(x) & ppy()Ph(x)

® : # LM samples

exp

potential calls # LM samples | vocabulary | X | x| . # LM samples X

| vocabulary | X | x|

LM samples ~ exp Dk (g1 | pry) 1

Better approaches to controlled generation

Syntactic and
Locally-Constrained Semantic
Sample-rank .
Decoding Importance

Sampling (Ours)

x|

Output distribution g(xX) x pry(0)P(x) | w=]] = (;(LX|;¢)(;(LX|£) g(x) & ppy()Ph(x)

® : # LM samples

exp

potential calls # LM samples | vocabulary | X | x| . # LM samples X

| vocabulary | X | x|

LM samples ~ exp Dy, (g || pra) 1 '~ exp Dy (gl]1y)
L i

Reducing LM samples: Sequential Monte Carlo

Use incremental weights to focus computation on promising particles

Reducing LM samples: Sequential Monte Carlo

Use incremental weights to focus computation on promising particles

1f

Current

: a =
generations

ada =

Reducing LM samples: Sequential Monte Carlo

Use incremental weights to focus computation on promising particles

Locally Constrained

Decoding
| sz |
if —’» 1T tensors
Current - —> 3 = torch

generations

a = —p g = tensors

Reducing LM samples: Sequential Monte Carlo

Use incremental weights to focus computation on promising particles

| Dy
Locally Constrained Incremental
Decoding weights w,
| :: |
if —’» if tensors —> (0.01
Current 5 = —+ 3 = torch — 032

generations

3 = —> a = tensors — (.32

Reducing LM samples: Sequential Monte Carlo

Use incremental weights to focus computation on promising particles

D
Locally Constrained Incremental y—— s
Decoding weights w, Ping
. :: | !:
1f —’» it tensors —> (.01 7 3 = torch
Qe(rigg?in(;[ns a = > a = torch —> (0.32 = a = torch
a = —> a = tensors =—> (032 —> 5 = tensors

Sample-rank

Locally-Constrained
Decoding

More efficient approaches to controlled generation

Syntactic and
Semantic
Importance
Sampling (Ours)

Syntactic and
Semantic
Sequential Monte
Carlo (Ours)

Output distribution

g(x) & ppy(0)ph(x)

| x|

LB p X)h X
2l = H > P X)P X)

g(x) & ppy(0)ph(x)

g(x) & ppy(0)p(x)

verifier calls

LM samples

| vocabulary | X | x|

CI(g)q:O # LM samples

. # LM samples X
| vocabulary | X | x|

o :p# LM samples X | x|

ex

. # LM samples X
| vocabulary | X | x|

LM samples

~ exp Dy (g | | pry)

~ exp Dy (8]]1:)

~10x fewer than
Syntactic and
Semantic Importance
Sampling

More efficient approaches to controlled generation

How do these methods perform?

Sample-rank

Locally-Constrained
Decoding

Syntactic and
Semantic
Importance
Sampling (Ours)

Syntactic and
Semantic
Sequential Monte
Carlo (Ours)

Output distribution

g(x) & ppy(0)ph(x)

_ P X)P | X)
900 = H Zx,p(x'|X<t)¢(x’|X<t)

=1

g(x) & ppy(0)ph(x)

g(x) & ppy(0)p(x)

verifier calls

LM samples

| vocabulary | X | X|

CI(g)q:O # LM samples

. # LM samples X
| vocabulary | X | x|

0 :p# LM samples X | x|

ex

. # LM samples X
| vocabulary | X | X|

LM samples

~ exp Dy (g | | pry)

~ exp Dy (8]]1:)

~10x fewer than
Syntactic and
Semantic Importance
Sampling

Sequential Monte Carlo boosts performance across challenging domains

Data science Goal inference

0.4
0.3
0.2
0.1
L .
0.0

Molecular synthesis Text-to-SQL

0.6
=
I A
' 0.4
0.2 p— 0.2
T
0.0 0.0

+ Locally Constrained
Decoding

. + Expensive potentials . + Sequential Monte Carlo

0.3

0.2

©
[
I

O
o

o
o

Accuracy on task

o
IaN

+ Greediness correction

Sequential Monte Carlo is more frugal than Importance Sampling

~10x fewer LM calls in domains with constraining potentials

Data Science Goal Inference Molecular Synthesis Text-to-SQL
0.6
0.3 0.6 1 0.6 pE T
04 pb
O 0.2 0.4 0.4
e
B
0.1 0.2 0.2 0.2
0.0 0.0 0.0 0.0
Full IS Full SMC Full IS Full SMC Full IS Full SMC Full IS Full SMC

Method

LM samples | 5 10 Jill50

Sequential Monte Carlo allows small LMs to punch above their weights

Data Science

Lai et al.
(2022)

0.4
0.3
D
3 0.2
3 0
0.1
0.0
Llama3.1 Llama3.1 Codex-002
(8b) (70Db) (175b)
Model

Base LM . + greediness correction, expensive potentials . + SMC

tl;dr

Frame controlled generation as probabilistic inference

Use Sequential Monte Carlo to sample from the posterior

from genlm.control import PromptedLLM, BoolFSA, AWRS

Create a language model potential.
1lm = PromptedLLM.from_name("gpt2")
11lm.set_prompt_from_str("Here is my honest opinion:")

Create a finite-state automaton potential using a regular expression.
fsa = BoolFSA.from_regex(r" SMC is ($ ¢ @D | HHP) with LMs")

Coerce the FSA so that it operates on the token type of the language model.
coerced_fsa = fsa.coerce(llm, f=b"".join)

Create a token sampler that combines the language model and FSA.
token_sampler = AWRS(1llm, coerced_fsa)

Library: github.com/genim/genim-control

Generation is asynchronous; use await if calling in an async context (like in an async

function or in a Jupyter notebook) and “asyncio.run(token_sampler.smc(...)) otherwise.
sequences = await token_sampler.smc(

n_particles=10, # Number of candidate sequences to maintain

ess_threshold=0.5, # Threshold for resampling

max_tokens=30, # Maximum sequence length

verbosity=1 # Print particles at each step

sequences.decoded_posterior

Example output:

{

' SMC is @ @ with LMs': 1.9,
}

Our org GenlLM is recruiting! genlm.org

http://github.com/genlm/genlm-control
http://genlm.org

Does it matter that our output follows the right distribution?

Yes! Methods that are closer in KL to true posterior perform better

Data Science Goal Inference Molecular Synthesis Text-to-SQL

O 0.0 0.0 _ -
-3 0.5
0.5
-10 1.0
‘1.0
k>kk _
Xk
Xk
XKk Xk Xk

0.0

-15

-1.5

kkxk XXXk

-20

Estimated log Z — KL(qglg | g9)

-1.5

. Locally Constrained Decoding + expensive potentials
B .+ greediness correction

B -+ Sequential Monte Carlo

Does it matter that our output follows the right distribution?

Yes! Better methods’ probabilities more correlated with downstream performance

Data Science Goal Inference Molecular Synthesis Text-to-SQL

0.4 0.8 0.8 0.8

0.3 0.6 0.6 0.6
0.2 0.4 0.4 0.4
0.1 0.2 0.2 - 0.2
0.0 0.0 - 0.0 0.0

Method

Correlation

. + greediness correction . + expensive potentials. + Sequential Monte Carlo

