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• Code:


• Static analysis
def signal(context): 

server = LSPDiagnosticServer(“python”) 
diagnostics = server.get_diagnostics(code) 
errors = [d for d in diagnostics  
        if d["severity"] == 1] 
    if errors: 
        return 0 
    return 1



Many signals we can use to guide LMs

• Code:


• Static analysis


• Run tests check for errors

def signal(context): 
test_code = """import torch 
list_of_tensors = [torch.randn(3),  
   torch.randn(3),  
   torch.randn(3)] 
""" 
try: 

exec(test_code + output) 
return 1 

except Exception as e: 
return 0
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• Code:


• Static analysis


• Run tests check for errors


• Robotics: Simulate a plan and check goal

def signal(context): 
with open(“task.pddl”, “w”) as f: 
f.write(task.format(goal=output)) 

proc = subprocess.run([ 
“validate”, “domain.pddl”,  
“task.pddl”, “plan.pddl”]) 

if proc.returncode != 0: 
return 0 

return 1
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• Code:


• Static analysis


• Run tests check for errors


• Robotics: Simulate a plan and check goal


• Chemistry: Compute molecular properties

def signal(context): 
state = SmilesParser.parse(context) 
for atom in state.mol.atoms: 

if not SmilesParser.hasCommonValence( 
    atom, state): 

return 0 
return SmilesParser.validateKekulization( 
    state.mol, state)
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Many signals we can use to guide LMs
Signals vary along several dimensions

continuous/binary


cheap/expensive


token-by-token/sparse


• Code:


• Static analysis


• Run tests check for errors


• Robotics: Simulate a plan and check goal


• Chemistry: Compute molecular properties



Signals as potentials ϕ
Generalizing verifiers, scorers, reward models…

ϕ(x) : context → ℝ≥0

def signal(context): 
server = LSPDiagnosticServer(“python”) 
diagnostics = server.get_diagnostics(code) 
errors = [d for d in diagnostics if d["severity"] == 1] 
    if errors: 
        return 0 
   return 0

def signal(context): 
test_code = """import torch 
list_of_tensors = [torch.randn(3),  
   torch.randn(3),  
   torch.randn(3)] 
“"" 
try: 

exec(test_code + output) 
return 1 

except Exception as e: 
return 0

def signal(context): 
with open(“task.pddl”, “w”) as f: 

f.write(task.format(goal=output)) 
proc = subprocess.run([ 

“validate”, “domain.pddl”,  
“task.pddl”, “plan.pddl”]) 

if proc.returncode != 0: 
return 0 

return 1

def signal(context): 
state = SmilesParser.parse(context) 
for atom in state.mol.atoms: 

if not SmilesParser.hasCommonValence( 
    atom, state): 

return 0 
return SmilesParser.validateKekulization( 
    state.mol, state)
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for a list of tensors, we have to…

torch.stack(tensors)

torch.tensor(tensors)tensors

torch.stack(*tensors)

torch.stack(tensors, dim=0)

torch.tensor(*tensors, axis=1)np.stack(tensors, axis=0)

in python, we can stack…
sure, let me see…

Prompt: How do I stack a list "tensors" of pytorch tensors?

…

all strings x

pLM(x)

Slide adapted from Alex Lew



Key idea: controlled generation as inference
LM takes in a prompt, acts as a prior , and s as likelihoodspLM ϕ
Prompt: How do I stack a list "tensors" of pytorch tensors?

def Φ_linter(context): 
server = LSPDiagnosticServer(“python”) 
diagnostics = server.get_diagnostics(code) 
errors = [d for d in diagnostics if 
d["severity"] == 1] 
    if errors: 
        return 0 
    return 1

∝ pLM(x)ϕlinter(x)

for a list of tensors, we have to…

torch.stack(tensors)
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torch.stack(*tensors)

torch.stack(tensors, dim=0)
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in python, we can stack…
sure, let me see… …

all strings x
Slide adapted from Alex Lew
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Key idea: controlled generation as inference
LM takes in a prompt, acts as a prior , and s as likelihoodspLM ϕ
Prompt: How do I stack a list "tensors" of pytorch tensors?

for a list of tensors, we have to…

torch.stack(tensors)

torch.tensor(tensors)tensors

torch.stack(*tensors)

torch.stack(tensors, dim=0)

torch.tensor(*tensors, axis=1)np.stack(tensors, axis=0)

in python, we can stack…
sure, let me see… …

all strings x

∝ pLM(x)ϕlinter(x)ϕtest(x)

def Φ_test(context): 
test_code = """import torch 
list_of_tensors = 
[torch.randn(3), torch.randn(3),  
 torch.randn(3)]""" 
try: 

exec(test_code + output) 
return 1 

except Exception as e: 
return 0

Slide adapted from Alex Lew

ϕlinter = 0

ϕlinter = 0

ϕlinter = 0

ϕtest = 0 ϕtest = 0

ϕtest = 0 ϕtest = 0
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Current approaches to controlled generation have major flaws

Sample-rank (best-of-N, 
rejection sampling etc.)
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e.g. best-of-n with a reward model (Nakano et al., 2021; Krishna et al., 2022; Zhou et al., 2023; Gui et al., 2024; Mudgal et al., 
2024; Ichihara et al., 2025), filtering with a verifier (Olausson et al., 2023; Chen et al. 2024; Lightman et al., 2024; Xin et al., 2024)
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e.g. best-of-n with a reward model (Nakano et al., 2021; Krishna et al., 2022; Zhou et al., 2023; Gui et al., 2024; Mudgal et al., 
2024; Ichihara et al., 2025), filtering with a verifier (Olausson et al., 2023; Chen et al. 2024; Lightman et al., 2024; Xin et al., 2024)
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Popular approach 1: Sample-rank

a = torch.stack((tensors)

a = torch.tensor(tensors)

a = torch.stack(tensors)

a = torch.stack(tensors)

Generations Potential Scores

0

0

1

Output

e.g. best-of-n with a reward model (Nakano et al., 2021; Krishna et al., 2022; Zhou et al., 2023; Gui et al., 2024; Mudgal et al., 
2024; Ichihara et al., 2025), filtering with a verifier (Olausson et al., 2023; Chen et al. 2024; Lightman et al., 2024; Xin et al., 2024)
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parentheses

ValueError: only one 
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Importance sampling tells us that…
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Sample-rank needs a lot of LM calls

g(x) ∝ pLM(x)ϕ(x)

Required # LM samples:   eDKL(g||pLM)
(Chatterjee and Diaconis, 2018)
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Current approaches to controlled generation have major flaws

Sample-rank Locally Constrained Decoding 
(token masking, logit biasing etc.)

Samples from the right 
distribution?

How many potential calls?

How many LM calls?

|samples |

g(x) ∝ pLM(x)ϕ(x)

≈ exp DKL(g | |pLM)
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Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials

a = torch.

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)
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Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials, normalize

a = torch.

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)
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Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials, normalize, sample

a = torch.

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)
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Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials, normalize, sample

a = torch.tensor(

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)
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Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials, normalize, sample

a = torch.tensor(tensors

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)
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Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials, normalize, sample

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)
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Sample-rank Locally-Constrained Decoding
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distribution?
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g(x) ∝ pLM(x)ϕ(x)
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≈ exp DKL(g | |pLM) 1
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Locally Constrained Decoding calls potentials ~100k times per step

(e.g., Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

a = torch.tensor(

we run the potentials 
on full token vocabulary 

at each step!
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Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”
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tensor
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if tensors in torch.

a 

tensor

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”
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Distribution has the right support, but overrepresents greedy samples

if tensors in torch.tensor…

for i in torch.stack(tensors):…

try: 
torch.stack(tensors) 

except…

with torch.cuda.device(‘0’):…



Locally Constrained Decoding samples from the wrong distribution
Distribution has the right support, but overrepresents greedy samples

if tensors in torch.tensor…

for i in torch.stack(tensors):…

try: 
torch.stack(tensors) 

except…

with torch.cuda.device(‘0’):…

lϕ(x) =
|x|

∏
i

pLM(xt |x<t)ϕ(xt |x<t)
∑x′￼

pLM(x′￼|x<t)ϕ(x′￼|x<t)
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Correcting the output distribution
Use weights to discount bad samples and emphasize good ones

o the

you

tensors

torch

we
if 

ffor a 

lϕ(x)
|x|

∏
i

wt(x) = pLM(x)ϕ(x)

wt(x) = +
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Reducing calls to the potentials
Split potentials into    (efficient) and    (expensive)Φ Φef exp

Φef

Φexp

: grammars, finite-state machines, regular expressions, reward models… 

: executing test cases, running simulations, LM as judge…

Sample  from Locally Constrained Decoding using only x Φef

Weights correct for greediness at every step and for  at the last step Φexp



Better approaches to controlled generation

Sample-rank Locally-Constrained 
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g(x) ∝ pLM(x)ϕ(x)
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∏
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Φ : # LM samples

ef

exp
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Reducing LM samples: Sequential Monte Carlo
Use incremental weights to focus computation on promising particles
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More efficient approaches to controlled generation
How do these methods perform?
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Sequential Monte Carlo boosts performance across challenging domains
Data science

Molecular synthesis

Goal inference

Text-to-SQL

LM + Locally Constrained  
Decoding + Greediness correction

+ Expensive potentials + Sequential Monte Carlo



Sequential Monte Carlo is more frugal than Importance Sampling

Data Science Goal Inference Molecular Synthesis Text-to-SQL

LM samples

~10x fewer LM calls in domains with constraining potentials



Sequential Monte Carlo allows small LMs to punch above their weights

Data Science

Base LM + SMC + greediness correction, expensive potentials 

Lai et al. 

(2022)



tl;dr

Library: github.com/genlm/genlm-control


Our org GenLM is recruiting! genlm.org

Frame controlled generation as probabilistic inference


Use Sequential Monte Carlo to sample from the posterior

http://github.com/genlm/genlm-control
http://genlm.org


Appendix



Does it matter that our output follows the right distribution?
Yes! Methods that are closer in KL to true posterior perform better

Data Science Goal Inference Molecular Synthesis Text-to-SQL

Locally Constrained Decoding + expensive potentials
+ greediness correction
+ Sequential Monte Carlo



Does it matter that our output follows the right distribution?
Yes! Better methods’ probabilities more correlated with downstream performance

+ greediness correction + expensive potentials + Sequential Monte Carlo

Data Science Goal Inference Molecular Synthesis Text-to-SQL


