
Syntactic and Semantic Control
of Large Language Models
via Sequential Monte Carlo

João Loula*1 Benjamin LeBrun*5 Li Du*6
Ben Lipkin1 Clemente Pasti2 Gabriel Grand1 Tianyu Liu2
Yahya Emara2 Marjorie Freedman8 Jason Eisner6 Ryan Cotterell2
Vikash Mansinghka‡1 Alexander K. Lew‡1,7 Tim Vieira‡2 Timothy J. O’Donnell‡3,4,5

1MIT 2ETH Zürich 3McGill 4Canada CIFAR AI Chair 5Mila 6Johns Hopkins 7Yale 8ISI
*co-first authorship, ‡co-senior authorship

Many signals we can use to guide LMs

Many signals we can use to guide LMs

• Code:

• Static analysis
def signal(context):

server = LSPDiagnosticServer(“python”)
diagnostics = server.get_diagnostics(code)
errors = [d for d in diagnostics
 if d["severity"] !" 1]
 if errors:
 return 0
 return 1

Many signals we can use to guide LMs

• Code:

• Static analysis

• Run tests check for errors

def signal(context):
test_code = """import torch
list_of_tensors = [torch.randn(3),
 torch.randn(3),
 torch.randn(3)]
"""
try:

exec(test_code + output)
return 1

except Exception as e:
return 0

Many signals we can use to guide LMs

• Code:

• Static analysis

• Run tests check for errors

• Robotics: Simulate a plan and check goal

def signal(context):
with open(“task.pddl”, “w”) as f:
f.write(task.format(goal=output))

proc = subprocess.run([
“validate”, “domain.pddl”,
“task.pddl”, “plan.pddl”])

if proc.returncode #$ 0:
return 0

return 1

Many signals we can use to guide LMs

• Code:

• Static analysis

• Run tests check for errors

• Robotics: Simulate a plan and check goal

• Chemistry: Compute molecular properties

def signal(context):
state = SmilesParser.parse(context)
for atom in state.mol.atoms:

if not SmilesParser.hasCommonValence(
 atom, state):

return 0
return SmilesParser.validateKekulization(
 state.mol, state)

Many signals we can use to guide LMs
Signals vary along several dimensions

• Code:

• Static analysis

• Run tests check for errors

• Robotics: Simulate a plan and check goal

• Chemistry: Compute molecular properties

Many signals we can use to guide LMs
Signals vary along several dimensions

continuous/binary

• Code:

• Static analysis

• Run tests check for errors

• Robotics: Simulate a plan and check goal

• Chemistry: Compute molecular properties

Many signals we can use to guide LMs
Signals vary along several dimensions

continuous/binary

cheap/expensive

• Code:

• Static analysis

• Run tests check for errors

• Robotics: Simulate a plan and check goal

• Chemistry: Compute molecular properties

Many signals we can use to guide LMs
Signals vary along several dimensions

continuous/binary

cheap/expensive

token-by-token/sparse

• Code:

• Static analysis

• Run tests check for errors

• Robotics: Simulate a plan and check goal

• Chemistry: Compute molecular properties

Signals as potentials ϕ
Generalizing verifiers, scorers, reward models…

ϕ(x) : context → ℝ≥0

def signal(context):
server = LSPDiagnosticServer(“python”)
diagnostics = server.get_diagnostics(code)
errors = [d for d in diagnostics if d["severity"] !" 1]
 if errors:
 return 0
 return 0

def signal(context):
test_code = """import torch
list_of_tensors = [torch.randn(3),
 torch.randn(3),
 torch.randn(3)]
“""
try:

exec(test_code + output)
return 1

except Exception as e:
return 0

def signal(context):
with open(“task.pddl”, “w”) as f:

f.write(task.format(goal=output))
proc = subprocess.run([

“validate”, “domain.pddl”,
“task.pddl”, “plan.pddl”])

if proc.returncode #$ 0:
return 0

return 1

def signal(context):
state = SmilesParser.parse(context)
for atom in state.mol.atoms:

if not SmilesParser.hasCommonValence(
 atom, state):

return 0
return SmilesParser.validateKekulization(
 state.mol, state)

Key idea: controlled generation as inference

Key idea: controlled generation as inference
LM takes in a prompt
Prompt: How do I stack a list "tensors" of pytorch tensors?

Slide adapted from Alex Lew

Key idea: controlled generation as inference
LM takes in a prompt, acts as a prior pLM

for a list of tensors, we have to…

torch.stack(tensors)

torch.tensor(tensors)tensors

torch.stack(*tensors)

torch.stack(tensors, dim=0)

torch.tensor(*tensors, axis=1)np.stack(tensors, axis=0)

in python, we can stack…
sure, let me see…

Prompt: How do I stack a list "tensors" of pytorch tensors?

…

all strings x

pLM(x)

Slide adapted from Alex Lew

Key idea: controlled generation as inference
LM takes in a prompt, acts as a prior , and s as likelihoodspLM ϕ
Prompt: How do I stack a list "tensors" of pytorch tensors?

def Φ_linter(context):
server = LSPDiagnosticServer(“python”)
diagnostics = server.get_diagnostics(code)
errors = [d for d in diagnostics if
d["severity"] !" 1]
 if errors:
 return 0
 return 1

∝ pLM(x)ϕlinter(x)

for a list of tensors, we have to…

torch.stack(tensors)

torch.tensor(tensors)tensors

torch.stack(*tensors)

torch.stack(tensors, dim=0)

torch.tensor(*tensors, axis=1)np.stack(tensors, axis=0)

in python, we can stack…
sure, let me see… …

all strings x
Slide adapted from Alex Lew

ϕlinter = 0

ϕlinter = 0

ϕlinter = 0

Key idea: controlled generation as inference
LM takes in a prompt, acts as a prior , and s as likelihoodspLM ϕ
Prompt: How do I stack a list "tensors" of pytorch tensors?

for a list of tensors, we have to…

torch.stack(tensors)

torch.tensor(tensors)tensors

torch.stack(*tensors)

torch.stack(tensors, dim=0)

torch.tensor(*tensors, axis=1)np.stack(tensors, axis=0)

in python, we can stack…
sure, let me see… …

all strings x

∝ pLM(x)ϕlinter(x)ϕtest(x)

def Φ_test(context):
test_code = """import torch
list_of_tensors =
[torch.randn(3), torch.randn(3),
 torch.randn(3)]"""
try:

exec(test_code + output)
return 1

except Exception as e:
return 0

Slide adapted from Alex Lew

ϕlinter = 0

ϕlinter = 0

ϕlinter = 0

ϕtest = 0 ϕtest = 0

ϕtest = 0 ϕtest = 0

Current approaches to controlled generation have major flaws

Current approaches to controlled generation have major flaws

Sample-rank (best-of-N,
rejection sampling etc.)

Popular approach 1: Sample-rank

e.g. best-of-n with a reward model (Nakano et al., 2021; Krishna et al., 2022; Zhou et al., 2023; Gui et al., 2024; Mudgal et al.,
2024; Ichihara et al., 2025), filtering with a verifier (Olausson et al., 2023; Chen et al. 2024; Lightman et al., 2024; Xin et al., 2024)

Popular approach 1: Sample-rank

a = torch.stack((tensors)

a = torch.tensor(tensors)

a = torch.stack(tensors)

Generations

e.g. best-of-n with a reward model (Nakano et al., 2021; Krishna et al., 2022; Zhou et al., 2023; Gui et al., 2024; Mudgal et al.,
2024; Ichihara et al., 2025), filtering with a verifier (Olausson et al., 2023; Chen et al. 2024; Lightman et al., 2024; Xin et al., 2024)

Popular approach 1: Sample-rank

a = torch.stack((tensors)

a = torch.tensor(tensors)

a = torch.stack(tensors)

Generations Potential Scores

0

0

1

e.g. best-of-n with a reward model (Nakano et al., 2021; Krishna et al., 2022; Zhou et al., 2023; Gui et al., 2024; Mudgal et al.,
2024; Ichihara et al., 2025), filtering with a verifier (Olausson et al., 2023; Chen et al. 2024; Lightman et al., 2024; Xin et al., 2024)

SyntaxError:
mismatched
parentheses

ValueError: only one
element tensors

can be converted to
Python scalars

Popular approach 1: Sample-rank

a = torch.stack((tensors)

a = torch.tensor(tensors)

a = torch.stack(tensors)

a = torch.stack(tensors)

Generations Potential Scores

0

0

1

Output

e.g. best-of-n with a reward model (Nakano et al., 2021; Krishna et al., 2022; Zhou et al., 2023; Gui et al., 2024; Mudgal et al.,
2024; Ichihara et al., 2025), filtering with a verifier (Olausson et al., 2023; Chen et al. 2024; Lightman et al., 2024; Xin et al., 2024)

SyntaxError:
mismatched
parentheses

ValueError: only one
element tensors

can be converted to
Python scalars

Current approaches to controlled generation have major flaws

Sample-rank

How many potential calls?

Current approaches to controlled generation have major flaws

Sample-rank

How many potential calls? |samples |

Current approaches to controlled generation have major flaws

Sample-rank

Samples from the right
distribution?

How many potential calls? |samples |

Sample-rank samples from the correct distribution

sample

score by

choose proportional to

 output distribution converges to

x1, …xn ∼ pLM

ϕ(xi)

xi ϕ(xi)

⟹ g(x)

Importance sampling tells us that…

Sample-rank samples from the correct distribution

sample

score by

choose proportional to

 output distribution converges to

x1, …xn ∼ pLM

ϕ(xi)

xi ϕ(xi)

⟹ g(x)

Importance sampling tells us that…

g(x) ∝ pLM(x)ϕ(x)

Distribution we sample from

Sample-rank samples from the correct distribution

sample

score by

choose proportional to

 output distribution converges to

x1, …xn ∼ pLM

ϕ(xi)

xi ϕ(xi)

⟹ g(x)

Importance sampling tells us that…

g(x) ∝ pLM(x)ϕ(x)

Distribution we sample from Function we score by

Sample-rank samples from the correct distribution

sample

score by

choose proportional to

 output distribution converges to

x1, …xn ∼ pLM

ϕ(xi)

xi ϕ(xi)

⟹ g(x)

Importance sampling tells us that…

g(x) ∝ pLM(x)ϕ(x)

Distribution we sample from Function we score by

Distribution we

converge to

Current approaches to controlled generation have major flaws

Sample-rank

Samples from the right
distribution?

How many potential calls? |samples |

g(x) ∝ pLM(x)ϕ(x)

Current approaches to controlled generation have major flaws

Sample-rank

Samples from the right
distribution?

How many potential calls?

How many LM calls?

|samples |

g(x) ∝ pLM(x)ϕ(x)

Sample-rank needs a lot of LM calls

g(x) ∝ pLM(x)ϕ(x)

Sample-rank needs a lot of LM calls

g(x) ∝ pLM(x)ϕ(x)

Required # LM samples: eDKL(g||pLM)
(Chatterjee and Diaconis, 2018)

Current approaches to controlled generation have major flaws

Sample-rank

Samples from the right
distribution?

How many potential calls?

How many LM calls?

|samples |

g(x) ∝ pLM(x)ϕ(x)

≈ exp DKL(g | |pLM)

Current approaches to controlled generation have major flaws

Sample-rank Locally Constrained Decoding
(token masking, logit biasing etc.)

Samples from the right
distribution?

How many potential calls?

How many LM calls?

|samples |

g(x) ∝ pLM(x)ϕ(x)

≈ exp DKL(g | |pLM)

Popular approach 2: Locally Constrained Decoding

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

Popular approach 2: Locally Constrained Decoding
At each step:

a = torch.

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

+

tensor(

(

*

stack(

Popular approach 2: Locally Constrained Decoding
At each step: get next token probs

a = torch.

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

+

tensor(

(

*

stack(

Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials

a = torch.

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

+

tensor(

(

*

stack(

Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials, normalize

a = torch.

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

+

tensor(

(

*

stack(

tensor(

Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials, normalize, sample

a = torch.

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

\

tensors

)

t

(

tensors

Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials, normalize, sample

a = torch.tensor(

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

)\n

))

.

,

)

)

Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials, normalize, sample

a = torch.tensor(tensors

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

,

EOS

)

\n\n

\n
a = torch.tensor(tensors)

EOS

Popular approach 2: Locally Constrained Decoding
At each step: get next token probs, multiply potentials, normalize, sample

(e.g., OpenAI 2024; Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

Current approaches to controlled generation have major flaws

Sample-rank Locally-Constrained Decoding

Samples from the right
distribution?

How many potential calls?

How many LM calls?

g(x) ∝ pLM(x)ϕ(x)

|samples |

≈ exp DKL(g | |pLM)

Current approaches to controlled generation have major flaws

Sample-rank Locally-Constrained Decoding

Samples from the right
distribution?

How many potential calls?

How many LM calls?

g(x) ∝ pLM(x)ϕ(x)

|samples |

≈ exp DKL(g | |pLM) 1

Current approaches to controlled generation have major flaws

Sample-rank Locally-Constrained Decoding

Samples from the right
distribution?

How many potential calls?

How many LM calls?

g(x) ∝ pLM(x)ϕ(x)

|samples |

≈ exp DKL(g | |pLM) 1

\

tensors

)

t

(

tensors

Locally Constrained Decoding calls potentials ~100k times per step

(e.g., Shin et al., 2021; Scholak et al., 2021; Poesia et al., 2022; Willard & Louf, 2023; Moskal et al., 2024; Ugare et al., 2024)

a = torch.tensor(

we run the potentials
on full token vocabulary

at each step!

Current approaches to controlled generation have major flaws

Sample-rank Locally-Constrained Decoding

Samples from the right
distribution?

How many potential calls?

How many LM calls?

g(x) ∝ pLM(x)ϕ(x)

|samples |

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

Current approaches to controlled generation have major flaws

Sample-rank Locally-Constrained Decoding

Samples from the right
distribution?

How many potential calls?

How many LM calls?

g(x) ∝ pLM(x)ϕ(x)

|samples |

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

Locally Constrained Decoding samples from the wrong distribution

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”

Locally Constrained Decoding samples from the wrong distribution

o tensors

if

sure

np

torch

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”

Locally Constrained Decoding samples from the wrong distribution

o tensors

if

sure

np

torch

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”

Locally Constrained Decoding samples from the wrong distribution

o tensors

if

sure

np

torch

if

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”

Locally Constrained Decoding samples from the wrong distribution

o the

you

tensors

torch

we
if

a

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”

Locally Constrained Decoding samples from the wrong distribution

o the

you

tensors

torch

we
if

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”

o the

you

tensors

torch

we
if

Locally Constrained Decoding samples from the wrong distribution

tensors

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”

Locally Constrained Decoding samples from the wrong distribution

o ==

:

!=

in

.
if tensors

a

in

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”

Locally Constrained Decoding samples from the wrong distribution

o torch

list

a

range

tensors
if tensors in

a

torch

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”

Locally Constrained Decoding samples from the wrong distribution

o ==

:

!=

in

.
if tensors in torch

a

.

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”

Locally Constrained Decoding samples from the wrong distribution

o nn

tensor

stack

from

cat
if tensors in torch.

a

tensor

Example: LM wants to write English instead of Python: “if you have a list of tensors in torch, you can stack it by…”

Locally Constrained Decoding samples from the wrong distribution
Distribution has the right support, but overrepresents greedy samples

if tensors in torch.tensor…

for i in torch.stack(tensors):…

try:
torch.stack(tensors)

except…

with torch.cuda.device(‘0’):…

Locally Constrained Decoding samples from the wrong distribution
Distribution has the right support, but overrepresents greedy samples

if tensors in torch.tensor…

for i in torch.stack(tensors):…

try:
torch.stack(tensors)

except…

with torch.cuda.device(‘0’):…

lϕ(x) =
|x|

∏
i

pLM(xt |x<t)ϕ(xt |x<t)
∑x′

pLM(x′ |x<t)ϕ(x′ |x<t)

Current approaches to controlled generation have major flaws

Sample-rank Locally Constrained Decoding

Samples from the right
distribution?

How many potential calls?

How many LM calls?

g(x) ∝ pLM(x)ϕ(x)

|samples |

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

lΦ(x) =
|x|

∏
t=1

p(xt |x<t)ϕ(xt |x<t)
∑x′

p(x′ |x<t)ϕ(x′ |x<t)

Better approaches to controlled generation

Sample-rank Locally-Constrained
Decoding ?

Output distribution

potential calls

LM samples

g(x) ∝ pLM(x)ϕ(x)

LM samples

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

lΦ(x) =
|x|

∏
t=1

p(xt |x<t)ϕ(xt |x<t)
∑x′

p(x′ |x<t)ϕ(x′ |x<t)

Better approaches to controlled generation

Sample-rank Locally-Constrained
Decoding ?

Output distribution

potential calls

LM samples

g(x) ∝ pLM(x)ϕ(x)

LM samples

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

lΦ(x) =
|x|

∏
t=1

p(xt |x<t)ϕ(xt |x<t)
∑x′

p(x′ |x<t)ϕ(x′ |x<t)

Correcting the output distribution

Correcting the output distribution
Use weights to discount bad samples and emphasize good ones

Correcting the output distribution
Use weights to discount bad samples and emphasize good ones

o the

you

tensors

torch

we
if

ffor a

Correcting the output distribution
Use weights to discount bad samples and emphasize good ones

o the

you

tensors

torch

we
if

ffor a

wt(x) = +

Correcting the output distribution
Use weights to discount bad samples and emphasize good ones

o the

you

tensors

torch

we
if

ffor a

lϕ(x)
|x|

∏
i

wt(x) = pLM(x)ϕ(x)

wt(x) = +

Better approaches to controlled generation

Sample-rank Locally-Constrained
Decoding ?

Output distribution

potential calls

LM samples

g(x) ∝ pLM(x)ϕ(x)

LM samples

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

lΦ(x) =
|x|

∏
t=1

p(xt |x<t)ϕ(xt |x<t)
∑x′

p(x′ |x<t)ϕ(x′ |x<t)
g(x) ∝ pLM(x)ϕ(x)

Better approaches to controlled generation

Sample-rank Locally-Constrained
Decoding ?

Output distribution

potential calls

LM samples

g(x) ∝ pLM(x)ϕ(x)

LM samples

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

lΦ(x) =
|x|

∏
t=1

p(xt |x<t)ϕ(xt |x<t)
∑x′

p(x′ |x<t)ϕ(x′ |x<t)
g(x) ∝ pLM(x)ϕ(x)

Reducing calls to the potentials
Split potentials into (efficient) and (expensive)Φ Φeff exp

Reducing calls to the potentials
Split potentials into (efficient) and (expensive)Φ Φeff exp

Φeff : grammars, finite-state machines, regular expressions, reward models…

Reducing calls to the potentials
Split potentials into (efficient) and (expensive)Φ Φeff exp

Φeff

Φexp

: grammars, finite-state machines, regular expressions, reward models…

: executing test cases, running simulations, LM as judge…

Reducing calls to the potentials
Split potentials into (efficient) and (expensive)Φ Φeff exp

Φeff

Φexp

: grammars, finite-state machines, regular expressions, reward models…

: executing test cases, running simulations, LM as judge…

Sample from Locally Constrained Decoding using only x Φeff

Reducing calls to the potentials
Split potentials into (efficient) and (expensive)Φ Φeff exp

Φeff

Φexp

: grammars, finite-state machines, regular expressions, reward models…

: executing test cases, running simulations, LM as judge…

Sample from Locally Constrained Decoding using only x Φeff

Weights correct for greediness at every step and for at the last step Φexp

Better approaches to controlled generation

Sample-rank Locally-Constrained
Decoding ?

Output distribution

potential calls

LM samples

g(x) ∝ pLM(x)ϕ(x)

LM samples

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

lΦ(x) =
|x|

∏
t=1

p(xt |x<t)ϕ(xt |x<t)
∑x′

p(x′ |x<t)ϕ(x′ |x<t)
g(x) ∝ pLM(x)ϕ(x)

Φ : # LM samples ×
|vocabulary | × |x |

Φ : # LM samples

eff

exp

Better approaches to controlled generation

Sample-rank Locally-Constrained
Decoding

Syntactic and
Semantic

Importance
Sampling (Ours)

Output distribution

potential calls

LM samples

g(x) ∝ pLM(x)ϕ(x)

LM samples

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

lΦ(x) =
|x|

∏
t=1

p(xt |x<t)ϕ(xt |x<t)
∑x′

p(x′ |x<t)ϕ(x′ |x<t)
g(x) ∝ pLM(x)ϕ(x)

Φ : # LM samples ×
|vocabulary | × |x |

Φ : # LM samples

eff

exp

Better approaches to controlled generation

Sample-rank Locally-Constrained
Decoding

Syntactic and
Semantic

Importance
Sampling (Ours)

Output distribution

potential calls

LM samples

g(x) ∝ pLM(x)ϕ(x)

LM samples

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

lΦ(x) =
|x|

∏
t=1

p(xt |x<t)ϕ(xt |x<t)
∑x′

p(x′ |x<t)ϕ(x′ |x<t)
g(x) ∝ pLM(x)ϕ(x)

Φ : # LM samples ×
|vocabulary | × |x |

Φ : # LM samples

eff

exp

Better approaches to controlled generation

Sample-rank Locally-Constrained
Decoding

Syntactic and
Semantic

Importance
Sampling (Ours)

Output distribution

potential calls

LM samples

g(x) ∝ pLM(x)ϕ(x)

LM samples

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

lΦ(x) =
|x|

∏
t=1

p(xt |x<t)ϕ(xt |x<t)
∑x′

p(x′ |x<t)ϕ(x′ |x<t)
g(x) ∝ pLM(x)ϕ(x)

≈ exp DKL(g | | lΦ)
eff

Φ : # LM samples ×
|vocabulary | × |x |

Φ : # LM samples

eff

exp

Reducing LM samples: Sequential Monte Carlo
Use incremental weights to focus computation on promising particles

Reducing LM samples: Sequential Monte Carlo
Use incremental weights to focus computation on promising particles

if

a =

a =

Current

generations

Reducing LM samples: Sequential Monte Carlo
Use incremental weights to focus computation on promising particles

if

a =

a =

if tensors

a = torch

a = tensors

Locally Constrained

Decoding

Current

generations

Reducing LM samples: Sequential Monte Carlo
Use incremental weights to focus computation on promising particles

if

a =

a =

if tensors

a = torch

a = tensors

Locally Constrained

Decoding

Incremental

weights wt

0.32

0.32

0.01

Current

generations

Correct for greediness
and for Φexp

Reducing LM samples: Sequential Monte Carlo
Use incremental weights to focus computation on promising particles

if

a =

a =

if tensors

a = torch

a = tensors

Locally Constrained

Decoding

Incremental

weights wt

0.32

0.32

0.01

Resampling

a = torch

a = torch

a = tensors

Current

generations

Correct for greediness
and for Φexp

More efficient approaches to controlled generation

Sample-rank Locally-Constrained
Decoding

Syntactic and
Semantic

Importance
Sampling (Ours)

Syntactic and
Semantic

Sequential Monte
Carlo (Ours)

Output distribution

verifier calls

LM samples

g(x) ∝ pLM(x)ϕ(x)

LM samples

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

lΦ(x) =
|x|

∏
t=1

p(xt |x<t)ϕ(xt |x<t)
∑x′

p(x′ |x<t)ϕ(x′ |x<t)

≈ exp DKL(g | | lΦ)
~10x fewer than
Syntactic and
Semantic Importance
Sampling

g(x) ∝ pLM(x)ϕ(x) g(x) ∝ pLM(x)ϕ(x)

Φ : # LM samples ×
|vocabulary | × |x |

Φ : # LM samples

Φ : # LM samples ×
|vocabulary | × |x |

Φ : # LM samples × |x |

eff eff

exp exp

More efficient approaches to controlled generation
How do these methods perform?

Sample-rank Locally-Constrained
Decoding

Syntactic and
Semantic

Importance
Sampling (Ours)

Syntactic and
Semantic

Sequential Monte
Carlo (Ours)

Output distribution

verifier calls

LM samples

g(x) ∝ pLM(x)ϕ(x)

LM samples

≈ exp DKL(g | |pLM) 1

|vocabulary | × |x |

lΦ(x) =
|x|

∏
t=1

p(xt |x<t)ϕ(xt |x<t)
∑x′

p(x′ |x<t)ϕ(x′ |x<t)

≈ exp DKL(g | | lΦ)
~10x fewer than
Syntactic and
Semantic Importance
Sampling

g(x) ∝ pLM(x)ϕ(x) g(x) ∝ pLM(x)ϕ(x)

Φ : # LM samples ×
|vocabulary | × |x |

Φ : # LM samples

Φ : # LM samples ×
|vocabulary | × |x |

Φ : # LM samples × |x |

eff eff

exp exp

Sequential Monte Carlo boosts performance across challenging domains
Data science

Molecular synthesis

Goal inference

Text-to-SQL

LM + Locally Constrained
Decoding + Greediness correction

+ Expensive potentials + Sequential Monte Carlo

Sequential Monte Carlo is more frugal than Importance Sampling

Data Science Goal Inference Molecular Synthesis Text-to-SQL

LM samples

~10x fewer LM calls in domains with constraining potentials

Sequential Monte Carlo allows small LMs to punch above their weights

Data Science

Base LM + SMC + greediness correction, expensive potentials

Lai et al.

(2022)

tl;dr

Library: github.com/genlm/genlm-control

Our org GenLM is recruiting! genlm.org

Frame controlled generation as probabilistic inference

Use Sequential Monte Carlo to sample from the posterior

http://github.com/genlm/genlm-control
http://genlm.org

Appendix

Does it matter that our output follows the right distribution?
Yes! Methods that are closer in KL to true posterior perform better

Data Science Goal Inference Molecular Synthesis Text-to-SQL

Locally Constrained Decoding + expensive potentials
+ greediness correction
+ Sequential Monte Carlo

Does it matter that our output follows the right distribution?
Yes! Better methods’ probabilities more correlated with downstream performance

+ greediness correction + expensive potentials + Sequential Monte Carlo

Data Science Goal Inference Molecular Synthesis Text-to-SQL

