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Abstract

This thesis develops a system for automatically analyzing and improving

dynamic programs, such as those that have driven progress in natural lan-

guage processing and computer science, more generally, for decades. Finding a

correct program with the optimal asymptotic runtime can be unintuitive, time-

consuming, and error-prone. This thesis aims to automate this laborious process.

To this end, we develop an approach based on

1. a high-level, domain-specific language called Dyna for concisely specifying

dynamic programs

2. a general-purpose solver to efficiently execute these programs

3. a static analysis system that provides type analysis and worst-case time/s-

pace complexity analyses

4. a rich collection of meaning-preserving transformations to programs, which

systematizes the repeated insights of numerous authors when speeding up

algorithms in the literature

5. a search algorithm for identifying a good sequence of transformations that

ii



reduce the runtime complexity given an initial, correct program

We show that, in practice, automated search—like the mental search performed

by human programmers—can find substantial improvements to the initial pro-

gram. Empirically, we show that many speed-ups described in the NLP literature

could have been discovered automatically by our system. We provide a freely

available prototype system at https://github.com/timvieira/dyna-pi.
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Chapter 1

Introduction

Algorithmic research in natural language processing (NLP) has focused—in

large part—on developing dynamic programming solutions to combinatorial

problems that arise in the field. Such algorithms have been introduced over the

years for numerous linguistic formalisms, such as

• finite-state transduction (e.g., Mohri (1997), Eisner (2002)),

• context-free parsing (e.g., Stolcke (1995), Goodman (1999)),

• dependency parsing (e.g., Eisner (1996), Koo and Collins (2010))

• mildly context-sensitive parsing (e.g., Vijay-Shanker and Weir (1989), Vijay-

Shanker and Weir (1990), Kuhlmann, Satta, and Jonsson (2018)).

In recent years, the same algorithms have often been used for deep structured

prediction, using a neural scoring function that decomposes over the structure.1

1E.g., Durrett and Klein (2015), Rastogi et al. (2016), Lee et al. (2016), Dozat and Manning
(2017), Stern et al. (2017), Kim et al. (2017), Hong and Huang (2018), Wu, Shapiro, et al. (2018),
Wu and Cotterell (2019), Qi et al. (2020), and Rush (2020).
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Designing efficient algorithms is challenging. Designing and imple-

menting dynamic programs which are as efficient as possible is challenging and

error-prone. When a dynamic programming algorithm for a new problem is

first introduced in the literature, its runtime is sometimes suboptimal—faster

versions are often published over time (see Example 1). Indeed, introducing the

first algorithm and subsequently finding improvements is common throughout

computer science. We seek to facilitate this process through automation.

Example 1. Consider the following instances2 of published dynamic programs

whose runtime bounds were later improved. In the examples below, n denotes the

length of the input sentence.

• Projective dependency parsing: Collins (1996) gave an O(n5) algorithm that

was sped up to O(n4) by Eisner and Satta (1999a).

• Split-head-factored dependency parsing: implemented naïvely runs in O(n5);

with some effort, an O(n3) algorithm can be derived (Eisner, 1996; Johnson,

2007; Eisner and Blatz, 2007).

• Linear index-grammar parsing: O(n7) in Vijay-Shanker and Weir (1989), sped

up to O(n6) by Vijay-Shanker and Weir (1993).

• Lexicalized tree adjoining grammar parsing: O(n8) in Vijay-Shankar and

Joshi (1985), sped up to O(n7) by Eisner and Satta (2000).

2Many of these examples were brought to our attention in the works of Eisner and Blatz (2007)
and Gildea (2011); further discussion can be found therein.
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• Inversion transduction grammar: O(n7) in Wu (1996), sped up to O(n6) by

Huang, Zhang, et al. (2005).

• CKY parsing (Cocke and Schwartz, 1970; Younger, 1967; Kasami, 1965)

is typically presented in a suboptimal O(k3n3) form, but can be sped up to

O(k2n3 + k3n2) (Lange and Leiß, 2009; Eisner and Blatz, 2007) where k is the

number of nonterminal symbols in the grammar.

• Tomita’s context-free parsing algorithm (1985) runs in O(nρ+1) where ρ is the

length of the longest right-hand side of a context-free production in the grammar

(Johnson, 1989). However, it can be made to run in O(n3) by binarizing the

production rules.

Central question. This dissertation explores the question:

Can we automatically discover these faster algorithms?

A unified notation for dynamic programming. Our approach starts

with an observation made by Goodman (1999) that a dynamic programming

algorithm can be regarded as performing inference in a semiring-weighted de-

duction system. Their work builds upon a rich history of (unweighted) deduction

systems that we review in §9.1. Eisner, Goldlust, et al. (2005) provided a pro-

gramming language, Dyna, for expressing such deduction systems, along with a

compiler that produced fast inference code. We will use Dyna in this thesis as

our algorithm-specification language. We introduce the language in §2 and give

formal semantics in §4.
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Below is an example Dyna program that computes the total weight of all

paths between pairs of nodes in a weighted directed graph.

1 path(I,I) += 1.
2 path(I,K) += edge(I,J) * path(J,K).

Here the weight of an edge comes from the relation edge(I,J). For example, to

declare that the weight of the edge from a node labeled "a" to a node labeled

"b" is 13, we write edge("a","b") += 13. From there, the path(I,K) items encode a

weighted relation between all the nodes in the graph. Specifically, for all pairs of

nodes I, K:

path(I, K) = 1[I=K]︸ ︷︷ ︸
#1

+
∑
J

edge(I, J) · path(J, K)︸ ︷︷ ︸
#2

(1.1)

Here the variable J ranges over the set of nodes. The reason why the variable J

is summed in (1.1), while I and K are not, is because it is local to the right-hand

side of #2. The reader may recognize (1.1) as the mathematical recurrence for

the total weight of all paths between pairs of nodes in a graph. Turning this

mathematical specification into an efficient computational procedure requires

several implementation details to be specified. In this example, we need to

select data structures to store and index the edge and path relations—but, more

importantly, we need to solve the recursive equation to derive the total weight.

In § 5, we describe general-purpose procedures for taking the mathematical

recurrences (written in Dyna) and turning them into efficient algorithms.

Automated analysis. A key ingredient to our system is static analysis:

the ability to reason about the program without running it on specific inputs.
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Such analyses include type analysis, runtime complexity analysis, and space

complexity analysis (Cousot and Cousot, 1977; McAllester, 2002). These analyses

are important for understanding the space of possible program behaviors on

unknown input data.3 Automated program analysis aids programmers because

manual program analysis may be tedious and error-prone. In the context of NLP,

automated program analysis of dynamic programs (for instance, as specified

in Dyna) has the potential to help NLP algorithms researchers correctly and

speedily analyze their creations. Indeed, the NLP literature provides examples

where such automated analysis could have been of use.

Example 2. Consider the following example from the NLP literature:

• Kuhlmann, Gómez-Rodríguez, et al. (2011, §5.4) discovered a surprising prop-

erty of their tabular dependency parsing algorithm. Their initial naive analysis

gave a time complexity of O(n5) and space complexity of O(n3). Still, they were

able to tighten this analysis to a time complexity of O(n3) and space complexity

of O(n2) after noticing that the objects built by their transition system always

had two equal variables (which could be proved inductively). They then revised

their program formulation to eliminate the redundant variable.

• Huang and Sagae (2010) derive a projective dependency parsing algorithm

with a stated complexity of O(n7), which was later discovered to actually be

O(n6) according to Shi et al. (2017).4
3Although we do not explore it in this thesis, we also mention that static program analysis
is essential for compiling efficient code. Type inference, for example, allows the compiler to
synthesize efficient data structures for representing internal objects and efficient code for
pattern-matching against them.

4This is stated in Shi et al. (2017) without proof. The only explanation we could find in the
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Our automated analysis system yields big-O bounds on runtime and space com-

plexity (§6.3). These bounds are derived by inferring types for each variable

in a given rule and using each type to bound the number of ways the rule

will fire during execution (§6.3). At a high level, to apply this technique to

the path program, we first see that the variables I, J, and K are nodes. Sup-

posing that the set of nodes has size n. The number of ways that the rule

path(I,K) += edge(I,J) * path(J,K) will fire during inference is O(n3). The founda-

tions of this technique are given by McAllester (2002)’s meta theorem. Many

authors5 manually apply the meta theorem to analyze the runtime of their re-

cursive algorithms. Our runtime analyzer (§6.3) automatically applies the meta

theorem to derive tight bounds on the worst-case space and runtime complexity

of executing a given program (using the execution methods in §5).

Systematizing algorithmic speed-ups. All of the runtime improvements

mentioned in Example 1 can be cast as source-to-source program transformations

on Dyna programs (Eisner and Blatz, 2007); we develop these transformations

in §7.6 In dynamic programming, program transformations may be exploited to

literature is in Hong and Huang (2018). In that work, the authors explain that one of the
variables in the reduction rule (of a closely related model), which appears to take on O(n) values,
is functionally dependent on the other variables. This means that it may take on at most one
value given the values of other variables in scope; thus, one of the factors of n in the runtime
becomes a constant. This observation appears to also hold in the model of Huang and Sagae
(2010).

5A list of NLP papers that explicitly use this analysis technique includes the following citations:
Gildea (2011), Nederhof and Satta (2011), Gilroy et al. (2017), Melamed (2003), Kuhlmann
(2013), Nederhof and Sánchez-Sáez (2011), Büchse et al. (2011), Lopez (2009), Eisner and Blatz
(2007), Huang and Sagae (2010), and Kuhlmann, Gómez-Rodríguez, et al. (2011).

6In a seminal paper, Burstall and Darlington (1977) introduced the idea of synthesizing faster/-
better (functional) programs by source-to-source transformation: given an initial simple, lucid,
and—most importantly—correct program, we may repeatedly transform it by altering its recur-
sive structure to eventually reach an improved version of the program. Later, Tamaki and Sato
(1984) extended the technique to logic programming.
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derive algorithms with a faster runtime. These transformations map a program

to another with the same meaning (i.e., given the same inputs, it will produce

the same outputs) but with a possibly different running time. An example of

such a speed-up is given below.

Suppose that we only want to compute the total weight of paths from one

node set start(I) to another node set stop(K). The following program does this by

first computing the total weights for all pairs and then summing over a subset:

3 goal += start(I) * path(I,K) * stop(K).
4 path(I,I) += 1.
5 path(I,K) += edge(I,J) * path(J,K).

However, this program is not as efficient as it can be. By exploiting the distribu-

tive property of addition and multiplication, we can sum over the possible stop

nodes sooner in the recurrence:

6 goal += start(I) * pathstop(I).
7 pathstop(I) += stop(I).
8 pathstop(I) += edge(I,J) * pathstop(J).

Here pathstop(I) computes the total weight of all paths from node I to a node in

stop. The running time of this program is O(n2). In §7, we provide a collection of

program-to-program transformations capable of recovering this speedup.

Program improvement through automated transformation search.

This work shows how to search over program transformation sequences to auto-

matically discover faster algorithms, automating the work of the NLP algorith-

mist. Our work poses program optimization as search over transformed versions

of the initial program. We describe how to use search to rapidly rediscover many

of the known optimizations listed in Example 1. The program optimizer ties
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together many aspects of the thesis: Our space of possible programs (§2), a cost

function that serves as a proxy for program runtime (§6), and a set of directed

edges that connect semantically equivalent programs (§7). Our search starts at

the initial program and seeks a low-cost equivalent program that can be reached

by traversing directed edges. In §8, we review the search techniques that we

will use for this purpose. We provide an experimental demonstration in §8.3.

Summary. We motivated our approach with many examples from NLP

illustrating that designing and analyzing efficient dynamic programs is challeng-

ing. We will develop a framework that decomposes the problem of systematically

analyzing and improving dynamic programs into the following components:

1. a domain-specific language to logically specify an algorithm (§2 and §4)

and general machinery to execute them (§3.1 and §5)

2. a system for the automated analysis of the space/runtime complexity of

dynamic programs as well as type analysis (§6)

3. a rich collection of meaning-preserving transformations to programs (§7)

4. a search algorithm for identifying a good sequence of transformations that

reduce the running time complexity (§8).

We deliver a powerful system that can recover the kinds of speedups in Exam-

ple 1.7 We present an experimental demonstration of our system in §8.3. A proto-

type implementation is freely available at https://github.com/timvieira/dyna-pi.
7Our experiments include all of the speedup scenarios of Example 1 except for the linear index-
grammar and lexicalized tree adjoining grammar parsers. We include many other interesting
speedup scenarios in our experiments that we have not mentioned here.
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Chapter 2

A Domain-Specific Language for

Dynamic Programming

Dyna is a high-level, domain-specific language for concisely expressing dy-

namic programs as recurrence relations. It was first introduced by Eisner,

Goldlust, et al. (2005), where it was demonstrated to be a useful notation and

software library for rapidly developing efficient algorithms for a variety of pop-

ular models of linguistic structure (such as tagging, parsing, and translation) as

well as many combinatorial optimization problems that can be solved by dynamic

programming (such as shortest path, knapsack, and sequence alignment).

Our exposition of the Dyna language will unfold as a sequence of simple and

hopefully familiar computations—introducing concepts and terminology when

necessary or convenient.

Example 3. The total weight of length-4 paths in a weighted directed graph:

9



9 total += w(Y1,Y2) * w(Y2,Y3) * w(Y3,Y4) * w(Y4,Y5).

This program defines the value of a derived item total in terms of input items

w(...). This program assumes that we have encoded the set of edges in the given

graph by declaring values for w(...) items. For example, to declare that there is

an edge from a node labeled "a" to a node labeled "b" with weight 13, we write

w("a","b") += 13. The value of total is
∑

Y1 ···
∑

Y5 w(Y1,Y2) · w(Y2,Y3) · w(Y3,Y4) · w(Y4,Y5).

Dyna rules may be recursive:

Example 4. Minimum-cost path in a graph.

10 goal min= start(I) + β(I).
11 β(J) min= stop(J).
12 β(I) min= w(I,J) + β(J).

This program defines β(I) as the cost of the minimum-cost path in a graph from

the node I to any terminal node J. Here stop(J) must first be defined to be the

cost of stopping at J when J is a terminal node (and should be left undefined

otherwise). Also, w(I,J) must first be defined to be the cost of the directed edge

from I to J (and should be left undefined if there is no such edge).

Separation of logic and control. Example 4 specifies the problem of

finding the single-target shortest path in a weighted directed graph. However,

the details of the implementation are abstracted away. Thus, many well-known

single-target shortest path algorithms, such as the Bellman–Ford–Moore al-

gorithm (Bellman, 1958; Ford, 1956; Moore, 1959) and Dijkstra’s algorithm

(Dijkstra, 1959) are represented as the same Dyna program (Example 4) as they

are based on the same recursive factoring of paths. The differences between
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these algorithms are lower-level than the basic Dyna notation allows as they are

essentially only differences in evaluation order (§5.1.3). One of the benefits of

the Dyna notation is that it separates the mathematical specification of the algo-

rithm from the details of the execution of that algorithm (e.g., data structures,

control flow, execution order). This idea is often referred to as the separation of

logic and control (Kowalski, 1979).

Notice that if we change the equations from ⟨min,+⟩ to ⟨max,*⟩, we get the

Viterbi algorithm (Viterbi, 1967) for finding the most probable path in a graph

from nodes in a set start to nodes in a set stop where the probability of a path is

given by the product of edge probabilities (or weights) w(...):

Example 5. Finding the most probable path in a graph.

13 goal max= start(J) * β(J).
14 β(J) max= stop(J).
15 β(J) max= β(I) * w(I,J).

What is interesting about the connection between Example 4 and Example 5 is

that we kept the same recurrence, but we have changed the aggregate quantity

that we seek to compute. Both programs define the same set of derivations,

which we can interpret as paths in the graph. How these paths are weighted

and interpreted differs. In Example 4, paths have costs; the costs are extended

with addition and aggregated with min. In Example 5, paths have probabilities;

the probabilities are extended with multiplication and aggregated with addition.

We will return to the extension and aggregation operations momentarily.

Next, we give a fundamental algorithm to NLP.
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Example 6. Weighted context-free parsing with CKY (Cocke and Schwartz, 1970;

Younger, 1967; Kasami, 1965), or, more precisely, the inside algorithm (Baker,

1979; Jelinek, 1985):8

16 β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).
17 β(X,I,K) += γ(X,Y) * β(Y,I,K).
18 β(X,I,K) += γ(X,Y) * word(Y,I,K).
19 goal += β(s,0,N) * len(N).

The values of the γ items should be defined to be the weights of the corresponding

context-free grammar rules: for example, the item γ(s,np,vp)= 0.7 encodes the

production s
0.7−→ np vp. Also, the item word(X,I,K) should be 1 if the input word

X appears at position K of the input sentence and I = K−1, and should be left

undefined otherwise. Then for any nonterminal symbol X and any substring

spanning positions (I, K] of the input sentence, the item β(X,I,K) represents the

total weight of all grammatical derivations of that substring from X.

Syntax and Terminology. A Dyna program p serves to define values for

items. Thus, the program defines a function from items to values; we denote the

value of an item x as JxK. We call J·K the valuation function; we defer its formal

definition to Definition 22. Each item is named by an element of the Herbrand

universe H—that is, a (possibly nested) labeled tuple such as f(g(z,h(3))), which

is a 1-tuple labeled f whose single element is a 2-tuple labeled g. The elements of

H are known as ground terms because they contain no variables. The program

p itself is an unordered collection of rules9 of the form x⊕= y1 ··· yK . We call

x the head, and y1, ..., yK the body of the rule. Each yk in the body is called a
8If the reader is not familiar with context-free parsing, we recommend Jurafsky and Martin
(2020, chapters 12–13).

9Note that the collection may contain duplicates (§3.1.1).
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subgoal.

The operations ⊕ and manipulate10 values from a set V and may be any pair

of operations that form a semiring (§3.3). Let 0 and 1 denote the semiring’s

additive and multiplicative identity elements, respectively. If an item’s value

is left undefined or has no ⊕-summands, this is equivalent to saying it has

value 0, which means it cannot affect the values of any other items; in effect,

it does not exist. Common semirings include total weight ⟨R≥0, +, *⟩, boolean

⟨{false, true},∨,∧⟩, minimum cost ⟨R ∪ {∞}, min, +⟩, and Viterbi ⟨R≥0, max, *⟩.11

The distributive property of the semiring gives rise to an important interpre-

tation: The value of a given item is a certain sum over all of its derivations

(i.e., proof trees) under the program’s rules.12 The value of the derivation is the

product of the values of its axioms.13 In this paper, we assume that all rules in

the program use the same semiring.14

Rules do not have to name specific items. The terms in a rule may include

variables—denoted by capitalized letters, such as X—that are universally quan-

tified over H. This allows them to pattern-match against many items. Let

X1, ... , XN denote the distinct variables in a rule R. A grounding of R is a

10The notation used to denote the semiring operations varies from author to author. Many
authors (Lehmann, 1977; Kuich, 1997; Green, Karvounarakis, et al., 2007; Esparza et al.,
2007) use ⟨+, ·, 0, 1⟩, which leads to confusion since these operations are often used to denote
their ordinary meanings in the same text. In the NLP literature, it is most common to
⟨⊕,⊗, 0 , 1 ⟩ to avoid excessive overloading of ⟨+, ·, 0, 1⟩. We have chosen to use ⟨⊕, , 0, 1⟩ since
they are easier to distinguish visually.

11Semirings provide an elegant abstraction for computing many common quantities in NLP
models, such as expected values, covariance, gradients, entropies, and K-best (Goodman, 1999;
Huang, 2008; Eisner, Goldlust, et al., 2005; Huang and Chiang, 2005; Li and Eisner, 2009).

12The precise semantics, including the definition of the set of derivations, is given in §4.
13We formalize the sum-over-derivations interpretation in §4.
14Dyna 2 (Eisner and Filardo, 2011), relaxes this restriction. We discuss future work on Dyna 2

in §D.
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variable-free rule {X1 7→ x1, ... , XN 7→ xN}(R) (that is, the result of substituting

xi for all copies of Xi in R, for each i) for some x1, ..., xN ∈ H. Γ(R) denotes the

set of all groundings of R; including a non-ground rule in p is equivalent to

including all of its groundings.

The Dyna language allows logical side conditions on a rule, such as

goal += f(X) for X < 9. This is syntactic sugar for goal += f(X) * lessthan(X,9), where

the value of the lessthan constraint is given by

Jlessthan(X,Y)K def
= 1 if X < Y else 0

The constraint X < 9 makes use of the built-in relation <; Dyna’s standard

library supports many other common arithmetic relations, such as

• JX is Y+ZK def
= 1 if X=Y+Z else 0

• JX is YKK def
= 1 if X=YK else 0

Unlike the items defined by the program’s rules, built-in relations are opaque—

they are not defined by rules but rather by executable (non-Dyna) code.

Input data is represented as program D consisting of axioms—i.e., rules of

the form (x⊕= v) where v ∈ V. For example, consider the shortest-path program

as p and the specific graph to run it on as D.

p =


20 % definition of shortest
21 % path from S to stop
22 β(S) min= w(S,S’) + β(S’).
23 β(S) min= stop(S).

D =


24 % define graph (w, stop)
25 w(bal,phl) min= 3.
26 w(phl,nyc) min= 1.
27 ...
28 stop(nyc) min= 0.

Adding the D rules to p results in a new program p′ that can subsequently be
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queried, as we will show below.

Querying a Program. The way that a user interacts with a Dyna program

is through queries. A query against program p is specified as a (possibly

nonground) term x, and the result of a query is a specialized program that

encodes the restriction of the valuation function J·K (Definition 22) to the possible

groundings of x . Below is an example of a program, a query, and the query’s

results (going left to right).



29 % definition of shortest
30 % path from S to stop
31 β(S) min= w(S,S’) + β(S’).
32 β(S) min= stop(S).
33 % define graph (w, stop)
34 w(bal,phl) min= 3.
35 w(phl,nyc) min= 1.
36 ...
37 stop(nyc) min= 0.

query β(S)−−−−−−→


38 β(bal) min= 4.
39 β(phl) min= 1.
40 β(nyc) min= 0.
41 ...

The query β(S) returns a map: each item of the form β(S) maps S to the cost of

its shortest path to any of the stop nodes. As the example output above shows,

Dyna represents the result of a query as specialized programs, i.e., programs

that contain only the answers to the specific query. The specialized programs

that are answers to queries are restricted to have the property that all their

right-hand sides are constants.15

Notice that the results for a query may be an infinite-sized valuation. To

compactly represent certain infinite valuations, we allow the heads of the rules

in the results to contain free variables. For example,

15It is possible to relax this condition to allow the right-hand side of a rule to contain built-in
relations. For example, f(X) += 3 for (1 is X mod 2) says that f(X) items have a contribution
of 3 if X is an odd number.
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42 f(X) += 7. % free variable
43 f(3) += 11.

Jf(X)K =

{
18 if X = 3

7 otherwise

For efficiency, we apply constant folding to simplify the contribution to each

head wherever possible. For example, the following results would be replaced by

#42–43.

44 f(X) += 6.
45 f(Y) += 1.
46 f(3) += 9.
47 f(3) += 2.

Summary

This chapter has provided a high-level overview of the Dyna syntax. We

introduced the main concepts and terminology Dyna users should be familiar

with. We will describe the concepts pertaining to the internal representation of

programs in §3, the precise meanings of a derivation and the valuation mapping

in §4, and how to execute programs in §5.
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Chapter 3

Notation, Background, and

Utilities

This chapter includes background material that we will use throughout this

thesis. This background material includes:

3.1 Internal Representation of Programs . . . . . . . . . . . . . . . . . 18

3.1.1 Notation and Representation . . . . . . . . . . . . . . . . . 18

3.1.2 Lookup and Update Represention . . . . . . . . . . . . . . . 22

3.2 General Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Ordering Relations . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.4 Abstract Algebra . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Semirings: A Powerful Abstraction for Dynamic Programming . . 42
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3.1 Internal Representation of Programs

This section describes important notation and our internal program represen-

tation. We will describe an efficient data structure for representing the results

of a query as a result stream (§3.1.2.1). We will develop a representational

abstraction that allows us to regard rules as variable-free when manipulating

them (e.g., during inference (§5)).

3.1.1 Notation and Representation

We will now describe how programs are represented internally. When the

user writes a program such as

48 f(X) += g(X,Y) * h(Y).
49 f(X) += 1.

it is represented as a bag of rules. Each rule R is of the form x⊕= y1 ··· yK . It

is represented internally as a pair of a head and a body. The body is a list of

subgoals. Let head(R) and body(R) denote the head and body of the rule R. The

head x and each subgoal yk are represented as nonground terms. A nonground

term16 is a labeled tuple that may contain named variables (denoted by capital

letters, such as X and Y in the example). Let vars(·) be a function that returns the

set of free variables contained in a nonground term, e.g., vars(f(g(X),4,X)) 7→{X}.

Variables can be shared between nonground terms, e.g., X is shared between the

head f(X) and the subgoal g(X,Y) of #48 and Y is shared between its two subgoals.

16When we write “nonground term,” we mean a possibly nonground term, i.e., a term that is
allowed to be nonground but does not necessarily contain free variables.
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Substitution is a function θ(·) from nonground terms to nonground terms;

it is parameterized by a substitution mapping θ that maps variables to

nonground terms, such as θ={Y 7→ g(X), Z 7→ 4}. When we apply the substitution

map, θ(x), it will replace all instances of the variable on the left-hand side of an

arrow (7→) with whatever is on the right-hand side of the arrow.

Unification. The primary operation performed on nonground terms is

unification; it is performed internally by our solvers (§ 5) to bind variables.

Unification solves equations of the form θ(x)=θ(x′) where x and x′ are nonground

terms. Such constraints can be solved efficiently using a unification algorithm,

θ ← unify(x,x′) (e.g., Robinson (1965) and Martelli and Montanari (1982)).17 Here

unify returns a substitution mapping θ or FAIL if no solution exists. For example,

θ ← unify(f(Y,4), f(g(X),Z)) returns the solution θ={Y 7→ g(X), Z 7→ 4}.18 When we

apply this substitution map to both sides, the terms become equal, θ(f(Y,4))=

θ(f(g(X),Z)). On the other hand, θ(f(X,g(X))) = θ(f(3,g(4))) is unsatisfiable; thus,

θ=FAIL. We also mention equations of the form θ(x)=x′. Such constraints occur

in program transformations §7, and they can be solved in a similar fashion using

θ ← cover(x,x′); pseudocode is given in Algorithm 35.

Since variable names are global, we often need to rename them (the X in

#48 is supposed to be different from the X in #49. For this purpose, we use

a function fresh, which renames all variables within a term, rule, or entire

program to novel names in order to avoid unwanted name conflicts. For example,

17We give pseudocode and implementation details for our unification algorithm in §C.1.
18We allow unify to take a substitution mapping as an optional third argument, which enables

algorithms to chain together the results of unification calls.
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fresh(f(g(X),X))=f(g(X∗),X∗) where X∗ is a novel variable name.

Destructuring. We will use destructuring, such as (x⊕= y1 ··· yK)← R,

to break up the rule R into its head and variable-length body. It is equivalent

to x ← head(R), K ← | body(R) |, ⟨y1, ... , yK⟩ ← body(R). If K = 0, we regard

the body as 1. We may write f(x1, ...,xN) ← x to destructure a term into its

arguments and bind f to its label. For example, f(x1, ...,xN)← p(q(X),r(X)) sets

N ← 2, f ← p, x1 ← q(X), x2 ← r(X). In a destructuring expression, such as

(_⊕= y1 ··· yK)← R, we may use underscore (_) to match a subexpression that

we do not wish to name.

Bags. We will use bags (aka multisets) to represent a collection of rules

(programs). Literal bags are denoted by the paired delimiters H·I. Let α and

β be bags. We write operations α ∪ β for bag union and ∖ for bag difference.

When used as a condition, x ∈ β is true if and only if x appears at least once in

β. However, when used in a loop, x ∈ β will repeat duplicate instances of x. We

will access elements of βi of β by their “position” i—even though the position is

arbitrary—these positions are simply a canonical linear order of the (possibly

duplicated) elements.

Programs. The notation p[x]⊕= y1 ··· yK adds the rule x⊕= y1 ··· yK to

the program p. We use the notation p[x] to retrieve the collection containing the

bodies of the (specialized) rules in p whose heads have been unified with the

subgoal x .19 To take the product of two subgoals x and x′, we may write p[x x′] or

p[x] p[x′]. The notation can be used to read (rule bodies) and write (new rules)

19We may optionally pair the rule body with the head-unificiation’s substitution mapping.
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across programs with expressions like p′[x]⊕= p[y1] ··· p[yK ]. We write p⊕ p′ to

concatenate the rules of two programs: p and p′. To create an empty program p,

we write p← HI. We explain all of this notation in more detail in §3.1.2.

Shortcuts for defining integer intervals. We find the following notation

to be useful in defining lists of contiguous integers, i, j ∈ Z:

[i:j)
def
= [ i, i+1, ... , j−1 ]

[i:j]
def
= [ i, i+1, ... , j−1, j ]

(i:j)
def
= [ i+1, ... , j−1 ]

(i:j]
def
= [ i+1, ... , j−1, j ]

When an endpoint is not specified, we take it to be an extreme value, e.g.,

[−3:) = [−3,−2, ...] and [:10) = [... , 9, 10].20 We use this notation primarily to

index rule bodies.

Rule bodies. We make use of the following notational shortcuts for ma-

nipulating rule bodies. Let µ = y1 ··· yK be a list of subgoals. Let β be a

list of indices, then we define µβ
def
= [yi | i ∈ β ∩ [1:K]]. We frequently use the

integer-range syntax for β, e.g., µ[i:j) denotes the contiguous range of subgoals in

[i:j). We may also write y[i:j] y(j:k] = y[i:k]. Similarly, µ[i:j) µj µ(j:k] = µ[i:k], and

µ[:j) µj µ(j:] = µ.

20In these extreme cases, the difference between an open (“(” or “)”) and closed (“[” or “]”) endpoint
is irrelevant.
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3.1.2 Lookup and Update Represention

In this section, we will develop a notation that substantially reduces the

clutter that results from explicitly passing around substitution mappings and

from iteration over the results of queries. On the left is the notation that we will

develop, and on the right is the code that it represents.

p[a(I,L)]⊕=
m[b(I,J)] m[c(J,K)] m[d(K,L)]

translation
=⇒

for ⟨v1,θ1⟩ ∈ m[b(I,J)] :

for ⟨v2,θ2⟩ ∈ m[θ1(c(J,K))] :

v′ ← v1 v2

for ⟨v3,θ3⟩ ∈ m[θ2(d(K,L))] :

p ∪=θ3((a(I,L)⊕= v′ v3))

In the example, there are two programs: p and m. We are looking up values in m,

and we are updating p. The bracket notation m[x] returns a stream of pairs of

values and bindings to the variables in x .21 The notation p[x]⊕= β will add rules

to p that result from expanding the queries in β.22 We will formalize the lookup

and update notation shortly.

An explicit result stream for that query x represents the results of a query

against a given program as a stream: [θ(t)
((

x⊕= v(t)
))
]t=1... where each θ(t) is a

substitution map (over x’s variables) and v(t) ∈ V is a contribution to the value of

the item θ(t)(x).23 We will employ one more trick: we will implicitly update the

bindings of variables in x as our index t in the stream progresses. We do so by

representing variables as pointers and the substitution mapping by what each
21The notation m[x] should not be confused with mJxK, which computes the valuation mapping for

items matching x .
22Note that the result of expanding these queries could be an arbitrary rule body.
23The result streams have the added benefit that laziness supports infinitely long results. Such

flexibility can be useful if the stream’s consumer will not consume it entirely (i.e., the infinite
stream is short-circuited).
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variable (pointer) points to. We call this an implicit result stream. This has the

benefit that if a variable in x occurs outside of x, its bindings are seamlessly and

efficiently propagated.24 For example, if we create a result stream for f(X), then

the bindings to X would be propagated to g(X) because they share the variable

X. This implementation strategy has the benefit that θ(t)—and substitutions by

it—can be abstracted away in most algorithms—allowing for concise pseudocode

that does not need to directly manipulate or manage θ(t).

3.1.2.1 Implicit Result Stream Data Structure

Our implicit result system implements substitution by directly binding the

variables in x through in-place unification (Algorithm 1). Each variable is

represented as a pointer (or reference) in this system.Whenever distinct variables

X and Y are unified, we can simply bind the X pointer to Y. Later, if we want to

test the equality of two variables, we follow each of their pointers to their

respective roots and compare literal equality.25 We extend vars(·) to return the

set of variables under the control of a given result stream.

Since our iterators are in-place, in order to proceed to iteration t+1, the

iterator needs to undo the unifications from iteration t before it can safely apply

any new unifications. The in-place implementation avoids unnecessary copying

operations (e.g., calls to fresh, copying θ). To facilitate undoing a unification, we

24A similar data structure underlies Warren’s Abstract Machine, which is the basis of most
Prolog implementations (Warren, 1983; Aït-Kaci, 1991).

25Our data structure is inspired by the well-known union–find data structure (Galler and Fischer,
1964) for representing equivalence relations. The use of union–find for unification was explored
by Mannila and Ukkonen (1986).
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have implemented unify_implicitly as a Python-style iterator, which has localized do

and undo code. If unification fails, this iterator loops zero times. If unification

succeeds, the iterator modifies the variable bindings as a side effect and yields a

value, then suspends while this result is processed. Once this iterator resumes,

it will undo its bindings—restoring its arguments to their prior state from before

unify_implicitly was called.

Pseudocode for implicit unification is provided in Algorithm 1; it uses syntax

for creating iterators based on Python’s generators.26 The logic in the procedure

is the same as unify (Algorithm 34). The pseudocode makes use of the following

helper functions: isbound(·), which returns true if and only if its argument is not

a null pointer (i.e., not a free variable), and deref(·) follows the pointer.

Lastly, we write [x = y] as a shorthand for unify_implicitly(x, y),27 and v[x = y] as

shorthand for v [x = y] where v ∈ V is constant value.

3.1.2.2 Lookup (p[x])

In this section, we show how to create (implicit) result streams by intersecting

a query with the rules of a program and joining result streams so that they

correspond to product queries. Pseudocode for the intersection of a query x

against a program p is given in Algorithm 2. In this procedure, the query x is

26Python’s generator syntax (https://peps.python.org/pep-0255/) includes the yield key-
word, similar to return in regular functions. However, the key difference is that return
provides a single value, whereas yield allows for the production of a sequence of values.
Moreover, generators can be paused and resumed: a yield statement outputs a value and
temporarily suspends execution. When the generator is next called, it resumes from where
it left off, continuing until it encounters another yield or it reaches the end of the function.
Additionally, the expression “yield from xs” is a shorthand for “for x ∈ xs: yield x”.

27This notation was inspired by Iverson bracket notation.
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Algorithm 1 unify_implicitly: Implicit unification algorithm.
1. def unify_implicitly(x, y):
2. if x = y : yield 1 ▷ Success: suspend
3. else if isvar(x) :
4. if isbound(x) : yield from unify_implicitly(deref(x), y)
5. else if isvar(y) and isbound(y) : yield from unify_implicitly(x, deref(y))
6. else if x does not occur in y :
7. try:
8. bind x to y ▷ x is free; bind it to y here
9. yield 1 ▷ Success: suspend

10. finally:
11. unbind x ▷ Undo binding

12. else if isvar(y) : yield from unify_implicitly(y,x) ▷ Handled by symmetry
13. else if isterm(x) and isterm(y) and their labels are equal :
14. yield from unify_implicitly(x.args, y.args)
15. else if isseq(x) and isseq(y) and |x| = |y| : ▷ Unify argument sequences
16. if |x| = 0: yield 1 ▷ Success: suspend
17. else:
18. for _ ∈ unify_implicitly(x1, y1) :
19. yield from unify_implicitly

(
x(1:], y(1:]

)

nondeterministically matched against different cases, including values, builtins,

and program rules. In the case of program rules, if the query x unifies with

the head x′ of a rule x′⊕= y1 ··· yK , the dispatch procedure suspends—allowing

the caller of the method to peer at the state of the variables in x and the value

y1 ··· yK emitted by yield. Once the caller is ready to move to the next match,

the process continues to the following rules in p. Notice that this procedure does

not compute pJxK; it only expands the query x by a single step.

Built-in relations. On line 2.6, we indicate that built-in relations should

insert their logic into the lookup procedure. To give a sense of what that logic

28In practice, we speed-up the loop line 2.8 by indexing the rules of p by a “hash code” that
ensures that for any q, unify(head(s), q) ̸= FAIL ⇒ hash(head(s)) = hash(q). Additionally, the cost
of fresh can be amortized somewhat by keeping a pool of fresh copies for each rule and reusing a
copy from the pool if there are no active references to it.
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Algorithm 2 p[x]: Intersect a query x with the rules of a program p. Returns an
implicit result stream (i.e., an iterator that mutates x ’s variable bindings and
emits rule bodies).

1. def p[x]:
2. ▷ Implicitly unify x with the heads of the rules in p; return a stream of their bodies

subject to implicit unification. If x is a value, return it. If x is a built-in relation,
dispatch to the built-in result stream method.

3. if x ∈ V : yield x
4. else if x is a builtin:
5. ▷ Dispatch to builtin-specific code; example code is given in Algorithm 3.
6. (...)
7. else
8. for R ∈ p : ▷ Use rules in the program28

9. ▷ Below, we freshen to avoid variable-name collisions in recursion
10. (x′⊕= y1 ··· yK)← fresh(R) ▷ Often, the body of a rule is just a constant.
11. for _ ∈ [x′ =x] :
12. yield y1 ··· yK

might look like, consider the case where the query x matches the built-constraint

A is B + C. The dispatching procedure looks like the pseudocode in Algorithm 3.

Notice that the pseudocode has several special cases that depend on whether

or not A, B, and C are bound to actual numbers. In the final “else” case, we

see an issue regarding built-in relations: they must be sufficiently instantiated

to be evaluated. For example, the addition builtin A is B+1 is not sufficiently

instantiated: it refuses to enumerate the infinitely many pairs ⟨A, B⟩ that satisfy

the relation. Determining when a relation is sufficiently instantiated is left to the

built-in library designer’s discretion. Thus, by modifying Algorithm 3, the library

could (lazily) enumerate all infinitely many pairs of floating-point numbers as a

proxy for the uncountable set of real solutions. Generally, built-in relations will

throw instantiation fault exceptions when the number of solutions is infinite

because it is more likely that the user made a mistake than they wanted an
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Algorithm 3 Built-in relation dispatching.
1. match x :
2.

...
3. case A is B + C:
4. if isnum(B) and B = 0 : ▷ Special cases for identity element (i.e., 0)
5. yield from [A=C]
6. else if isnum(C) and C = 0 :
7. yield from [A=B]
8. else if isnum(B) and isnum(C) : ▷ Solve for A given B and C
9. a← B+ C ▷ The + operation here is part of the host language.

10. yield from [A=a]
11. else if isnum(A) and isnum(C) : ▷ Solve for B given A and C
12. b← A− C

13. yield from [B=b]
14. else if isnum(A) and isnum(B) : ▷ Solve for C given A and B
15. c← A− B

16. yield from [C=c]
17. else
18. if optional : ▷ if delaying is allowed
19. yield x ▷ returns a “delayed constraint”
20. else
21. raise InstantiationFault()
22.

...
23. case A is B * C:
24.

...
25. case A is B / C:
26.

...

infinite stream of solutions. An alternative strategy (labeled as “optional” in

the code) is to delay the processing of the constraint in hopes that it becomes

more instantiated later. We note that the implementation of certain builtins

may throw runtime exceptions, and other implementations may encode errors

as special values (akin to NaN in floating-point numbers). This choice is up to the

designer of the specific built-in relation.

Join. Next, we describe how to lift the operator to join streams of values

and their associated variable bindings. Suppose β1 ← p[y1] and β2 ← p[y2] for
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queries y1 and y2. As suggested by the choice of notation β1 β2, the meaning of

joining result streams is the same as the meaning of the right-hand side of a

rule with y1 y2. An algorithm for creating a result stream for β1 β2 is given in

Algorithm 4. The algorithm is shockingly simple: it is just a pair of nested loops.

It is so simple due to the implicit unification strategy: variables are seamlessly

and efficiently propagated between subgoals.29 In particular, there is no need

to pass around or return explicit substitution mappings (θ). These nested loops

correspond to a join operation because the bindings from the outer loop over β1

are passed to the inner loop over β2. The inner loop iterator is re-initialized on

each iteration of the outer loop: β2 starts from the beginning, given the initial

bindings, which are (generally) different from the previous iteration of the outer

loop. In other words, to ensure the correct join behavior, it is important that the

iterators for p[y1] and p[y2] are only initialized when they are put in an iteration

context (e.g., such as line 4.3 or line 4.4). This ensures that the inner loop p[y2]

corresponds to a new iterator for each round of the outer loop.

Algorithm 4 β1 β2: Algorithm for joining result streams β1 and β2.
1. def β1 β2:
2. ▷ Each iteration of the outer iterator β1 binds variables through implicit unifica-

tion; those bindings are propagated to the inner iterator β2.
3. for v1 ∈ β1 :
4. for v2 ∈ β2 :
5. yield v1 v2

The result of the join operation is another implicit result stream. We write

p[y1 ··· yK ] as a shorthand for p[y1] ··· p[yK ]. This shorthand can be formalized

29Such propagation is often called a sideways information passing strategy in the logic program-
ming literature.
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as adding a case to Algorithm 2 that will dispatch to Algorithm 4.30 Note

that the for-loops in the algorithm can be performed in any order; however,

the choice of order may affect the running time.31 Since the join operation is

associative, a multi-way join need not be parenthesized; it is well-defined as the

-product of multiple result streams. In §6.3, we consider an automated method

for determining which ordering of a multi-way product is most efficient to use.

3.1.2.3 Update (p[x]⊕= ...)

This section discusses methods for aggregating result streams as updates

to a program. Let be p a program. Since p is just a specification of a valuation

mapping, it is a glorified map data structure (like a Python dictionary or Java

hash map). Thus, it seems reasonable that a user or algorithm should be able

to update a given item’s value by a specific value. Therefore, we allow p to be

updated using the same notation for updating maps:32

p[f(1)]⊕= 3 translates to
=⇒ p← p ∪ Hf(1)⊕= 3I

Similarly,

p[f(X)]⊕= 3 translates to
=⇒ p← p ∪ Hf(X)⊕= 3I

We can also add a new rule with subgoals

p[f(X)]⊕= g(X,Y) h(Y)
translates to

=⇒ p← p ∪ Hf(X)⊕= g(X,Y) h(Y)I

30Another choice is to make as builtin.
31Some care is needed to ensure that the multiplicands of noncommutative operations appear

in the correct order.
32Note that the updates here are additive (as suggested by ⊕=); they are not replacements or

overrides.
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Now, what happens with new rules containing subgoals that are result streams

(possibly from other programs)?

p[f(X)]⊕= g(X,Y) m[h(Y)]
translates to

=⇒ for v ∈ m[h(X)] : p[f(X)]⊕= g(X,Y) v

Notice that the elements of the stream are not required to be values in V; they

may contain delayed subgoals, for example, if m has the rule h(X)⊕= p(X,Z) in

the example above. Using this notation requires some care to ensure that the

meaning of the p(X,Z) items is consistent across m and p. A safe setting is one

where the delayed subgoals are guaranteed to have the same meaning across

programs; builtins are a good example of relations that have the same meaning

across programs. This flexibility allows us to include h(X) += 3 for (1 is X mod 2)

as a rule in m—broadening the set of valuations that we can compactly represent.

Lastly, we mention an important special case we implicitly handle in this

method. Replacing a subgoal with a set of values (or rule bodies) makes it

possible to “lose” a variable. Consider the following,

Example 7. Suppose we have an empty program p and

m =

{
50 f(X) += 4.

We wish to apply the rule goal += f(X) to the values in m using the following:

p[goal]⊕=m[f(X)]

If we are not careful, the rule added to p will be goal += 4, but that would be

incorrect, as the value 4 needs to be summed infinitely many times. We fix this

edge case by including a 4 with an infinite multiplicity factor into the update: the
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case of the real semiring∞ · 4=∞. Thus, the correct update is goal += ∞.33

The dropped variable check is encapsulated in the process of adding a rule.

In our implementation, we do the following. Let p[x]⊕= β be an update operation

where β is a stream. Let v be the current value in β’s stream. We use the

following multiplicity correction:

m =

{
1 if vars(x⊕= β) ⊆ vars(x⊕= v)
∞ otherwise

(3.1)

where vars(·) returns the set of free variables in its argument. Here is what the

condition says: if replacing the rule x⊕= β by x⊕= v loses a variable, we need to

sum infinite copies of v. For each iterate of the stream β, we use v ·m where m is

the result of (3.1) applied to the iterate (in its current state). This correction is

applied whenever we add rules using the update notation (p[x]⊕= β).

3.2 General Mathematics

For completeness, this section includes precise definitions of the key mathe-

matical concepts used throughout this work.

Definition 1. A binary relation R on a set A is a subset of the Cartesian

product: R ⊆ A×A. We typically denote inclusion tests using infix operators,

e.g., aR b ⇐⇒ ⟨a, b⟩ ∈ R.

Adjectives used to define binary relations include:
33In the case of an idempotent semiring (e.g., boolean, min-plus), the multiplicity ≥ 1 are all the

same. This is why the added complexity of checking update multiplicity does not appear in the
ordinary logic programming setting: the boolean semiring is idempotent.
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• Reflexive: ∀ a ∈ A : aR a

• Symmetric: ∀ a, b ∈ A : aR b =⇒ bR a.

• Asymmetric: ∀ a, b ∈ A : aR b =⇒ ¬(bR a)

• Antisymmetric: ∀ a, b ∈ A : aR b, bR a =⇒ a = b

• Transitive: ∀ a, b, c ∈ A : aR b, bR c =⇒ aR c

Definition 2. A partition σ of a set A is a set of (non-empty) subsets {σ1, ... , σK}

of A such that each element a ∈ A is a member of precisely one of these subsets.

Put differently, σ must be

(i) mutually exclusive: ∀ i ̸= j : σi ∩ σj = ∅

(ii) exhaustive: A =
⋃K

k=1 σk

3.2.1 Ordering Relations

Definition 3. A binary relation ≡ on a set A defines an equivalence relation

on the elements of A if and only if the following conditions are satisfied for all

a, b, c ∈ A:

(i) Reflexive: (a≡ a).

(ii) Symmetric: (a≡ b) =⇒ (b≡ a).

(iii) Transitive: (a≡ b), (b≡ c) =⇒ (a≡ c).

For a given element a ∈ A its equivalence class [a](≡) def
= {a′ | a≡ a′, a′ ∈ A}. The

set of all equivalence classes
{
[a](≡)

∣∣∣ a ∈ A} forms a partition of A.
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Definition 4. A binary relation ≼ on a set A defines a partial order on the

elements of A if and only if the following conditions are satisfied for all a, b, c ∈ A:

(i) Reflexive: a≼ a

(ii) Antisymmetric: a≼ b, b≼ a =⇒ a = b

(iii) Transitive: a≼ b, b≼ c =⇒ a≼ c

Definition 5. A binary relation ≺ on a set A defines a strict partial order

on the elements of A if and only if the following conditions are satisfied for all

a, b, c ∈ A:

(i) Asymmetric: a ≺ b =⇒ ¬(b ≺ a)

(ii) Transitive: a ≺ b, b ≺ c =⇒ a≼ c

Definition 6. A binary relation ≼ on a set A defines a total order if and only if

it is both a partial order, and it is total: a≼ b or b≼ a for all a, b, c ∈ A.

Definition 7. A binary relation ≲ on a set A defines a preorder on the elements

of A if and only if the following conditions are satisfied for all a, b, c ∈ A:

(i) Reflexive: a≲ a

(ii) Transitive: a≲ b, b≲ c =⇒ a≲ c

Definition 8. A binary relation ≺ over a set A is a well-founded ordering if

and only if it does not contain any infinitely descending chains: there is no

infinite sequence a0, a1, a2, ... ∈ A such that an+1≺ an for all n ∈ N.
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equivalence relation ✔ ✔ ✔

Figure 3.1: Taxonomy of order relations.

3.2.2 Functions

Definition 9. A function ϕ from a set A to a set B is a binary relation that

assigns exactly one element of B to each element of A. We write ϕ : A → B for

conciseness. We often refer to A → B as ϕ’s type.

Definition 10. The mapping ϕ : A → B is a bijection if for all a ∈ A:

• surjective: ∀ b ∈ B : ∃ a ∈ A : ϕ(a) = b.

• injective: ∀ a, a′ ∈ A : (ϕ(a) = ϕ(a′)) =⇒ (a = a′).

An equivalent definition is that ϕ is a bijection from A → B if and only if both of

the following conditions hold:

• ∀ a ∈ A : ∃! b : ϕ(a) = b

• ∀ b ∈ B : ∃! a : ϕ(a) = b

Furthermore, we say that the function ϕ−1 is the inverse of ϕ if and only if

∀ b : ϕ−1(b) = a where a is the unique solution to ϕ(a) = b.
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3.2.3 Graphs

Definition 11. A directed subgraph is strongly connected if and only if for

each pair of nodes i and j in the subgraph, there exist paths within the subgraph

from i⇝ j and j ⇝ i.

Definition 12. The strongly connected components (SCCs) of a graph G par-

tition it into strongly connected subgraphs. The SCCs are the equivalence classes

given by co-accessibility equivalence relation (i↭ j) ⇐⇒ (i⇝ j) and (j ⇝ i).

The graph relating SCCs is called the condensation of the graph G.

Example 8. Below is a diagram34 of a directed graph where its strongly connected

components have been annotated with dashed ellipses.

A B C

E FD

G H

J KI

L

Definition 13. A topological sort (toposort, for short) of a directed graph is a

total ordering (Definition 6) of its nodes such that for every edge i→ j, i comes

before j in the ordering. A toposort exists if and only if the graph is acyclic.
34This diagram is based on https://tex.stackexchange.com/questions/592539/
how-to-create-figures-with-strongly-connected-components.

35

https://tex.stackexchange.com/questions/592539/how-to-create-figures-with-strongly-connected-components
https://tex.stackexchange.com/questions/592539/how-to-create-figures-with-strongly-connected-components


We often talk about the toposort of the condensation of a cyclic graph; the

condensed graph is always acyclic. For completeness, we provide pseudocode for

Tarjan (1972)’s algorithm for finding a topologically sorted list of the strongly

connected components of a graph in Algorithm 5.
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Algorithm 5 sccs(incoming, targets): Enumerate the strongly connected compo-
nents (SCC; Definition 12) of a directed graph in topological order.

1. ▷Here the graph ⟨V,E⟩ is represented implicitly using a function incoming(v) that enumerates
the nodes u such that (u → v) ∈ E, and a subset of target nodes targets ⊆ V to begin
traversal from; if none of the nodes in targets depend (transitively) on a given SCCs, it will
be omitted from the list of SCCs returned. The algorithm is due to Tarjan (1972). It runs
in O(|V |+ |E|) time and uses O(|V |) additional space. Note that sccs(outgoing, V ), where
outgoing(u) enumerates the nodes v such that (u→ v) ∈ E, will return the same set of SCCs
sccs(incoming, V ), but in a reverse topological order.

2. def sccs(incoming, targets):
3. stack← [] ▷ We maintain a stack of distinct items
4. pos← map() ▷ We record the position of each node on the stack
5. visited← {} ▷ We maintain a set of nodes that have been visited
6. sccs_list← [] ▷ Will be the return value
7. def traverse(v):
8. low← | stack | ▷ Will be the return value
9. if v /∈ visited : ▷ first visit

10. visited.add(v)
11. pos[v]← | stack |
12. stack.push(v) ▷ we may undo this
13. for u ∈ incoming(v) :
14. if u ∈ pos : ▷ cycle detected
15. low min= pos[u]
16. else
17. low min= traverse(u)

18. if low = pos[v] : ▷ If low is unchanged; nothing beneath v is in its SCC
19. σ ← {}
20. while | stack | > low :
21. u← stack.pop()
22. σ.add(u)
23. pos.remove(u)

24. sccs_list.append(σ) ▷ v’s SCC is ready

25. return low
26. for v ∈ targets : traverse(v)

27. return sccs_list
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3.2.4 Abstract Algebra

Definition 14. A binary operation on a set V is any function ⊙ : V× V→ V.

Binary operators are often written using infix notation a⊙ b rather than ⊙(a, b),

which is typical for function applications.

Definition 15. A monoid ⟨V,⊙, i⟩ is a set V equipped with a binary operation ⊙

and an identity element i such that the following properties hold:

(i) ⊙ is associative: ∀ a, b, c ∈ V : (a⊙ b)⊙ c = a⊙ (b⊙ c)

(ii) i is the left and right identity element: ∀ a ∈ V : i⊙ a = a⊙ i = a

Some adjectives used to describe monoids include:

• commutative ⇐⇒ ∀ a, b ∈ V : a⊙ b = b⊙ a

• idempotent ⇐⇒ ∀ a ∈ V : a⊙ a = a

Definition 16. A group is a monoid ⟨V,⊙, i⟩ where additionally, every element

has an inverse element: ∀ a ∈ V,∃ b ∈ V : b ⊙ a = a ⊙ b = i. The element b may

be denoted as a−1 if the group is considered product-like or −a if the group is

considered sum-like.

Definition 17. A semiring ⟨V,⊕, , 0, 1⟩ is a set V equipped with two monoid

operations ⟨V,⊕, 0⟩ and ⟨V, , 1⟩ such that the following properties hold:

(i) ⟨V,⊕, 0⟩ is a commutative monoid

(ii) ⟨V, , 1⟩ is a monoid
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(iii) Distributivity: ∀ a, b, c ∈ V:

a (b⊕ c) = (a b)⊕ (a c) and (b a)⊕ (c a) = (b⊕ c) a

(iv) Multiplicative annihilation by 0: ∀ a ∈ V:

0 a = a 0 = 0

Additionally, we adopt the following notation for the n-fold sum

b·n def
= n·b def

=
n⊕

i=1

b for n ∈ N ∪ {∞} , b ∈ V (3.2)

and the n-fold product

bn
def
=

n⊗
i=1

b for n ∈ N ∪ {∞} , b ∈ V (3.3)

Some adjectives used to describe semirings include:

• commutative ⇐⇒ is commutative

• idempotent ⇐⇒ ⊕ is idempotent

Definition 18. A closed semiring has an additional operator, called the (Kleene)

star operator (·)⋆. This operation must satisfy the following axioms for all a ∈ V:

a⋆ = 1⊕ a a⋆ and a⋆ = 1⊕ a⋆ a

We often interpret a⋆ as the solution to the infinite series that arises from

unrolling either of its recursive identities:

a⋆ =
∞⊕
n=0

an for a ∈ V
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The star operation is useful for solving certain linear equations. For example,

x = b⊕a x⊕c y can be rearranged to “solve” for x without subtraction or division:

x = a⋆ (b⊕ c y).

A special family of semirings that always have a star operation is those that

are K-closed.

Definition 19. For K ∈ N, a semiring ⟨V,⊕, , 0, 1⟩ is K-closed if and only if35

∀ a ∈ V, ∀K ′ > K :
K′⊕
k=0

ak =
K⊕
k=0

ak.

Intuitively, K-closed semirings imply that we only have to sum contributions

of a cycle by iterating around the cycle at most K times; further iterations do

not affect the value of the summation. When K=0, the condition simplifies to

∀ a ∈ V : 1 ⊕ a = 1. We briefly mention some examples of K-closed semirings;

these examples are defined in §3.3. Examples of 0-closed semirings include the

boolean, min-plus, and Viterbi semirings. An example of a general K-closed

semiring include the (K+1)-best semirings (Mohri, 2002, §6) and the K-collapsed

natural numbers. Non-examples of K-closed semirings include the arithmetic

semirings.

Each K-closed semiring has simple expressions for computing the star opera-

tion because they are no longer infinite sums.

35It is possible to replace ∀K ′ with K ′ = K + 1—the conditions are equivalent (Mohri, 2002,
Lemma 4).
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

0-closed : a∗ = 1

1-closed : a∗ = 1⊕ a
2-closed : a∗ = 1⊕ a⊕ a2

...

K-closed : a∗ =
K⊕
k=0

ak

(3.4)

Definition 20. A semiring is monotonic under the partial ordering relation ≼ if

∀ a≼ b,∀ c ∈ V :


a⊕ c≼ b⊕ c
a c≼ b c

c a≼ c b

Where to now? In §3.3, we will describe a number of examples of semir-

ings. In §4.4, we will describe some special families of semirings that are useful

in providing convergence guarantees for Dyna programs.
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3.3 Semirings: A Powerful Abstraction

for Dynamic Programming

Semirings are a powerful abstraction for dynamic programming. They provide

a useful and elegant abstraction level for

• algorithms for NLP (e.g., Teitelbaum (1973), Mohri (1997), Goodman (1999),

and Huang (2008))

• probabilistic inference (e.g., Aji and McEliece (2006))

• database provenance (e.g., Green, Karvounarakis, et al. (2007), Green and

Tannen (2017), and Cheney et al. (2009))

• network analysis (e.g., Gondran and Minoux (2008) and Baras and Theodor-

akopoulos (2010))

• program analysis (e.g., Cousot and Cousot (1977), Esparza et al. (2010),

and Dolan (2013))

Semirings enable the following separation of concerns:

(1) devising a compact encoding of a set of derivations (e.g., paths in a graph,

parses of a sentence)

(2) how to evaluate and aggregate the derivations (e.g., the highest-weight

derivation, the total weight of all derivations)

42



In Dyna, part 1 is specified by the program rules, and part 2 is given by choice

of semiring. Modularizing by semiring gives different semantics for the same

algorithm with the same time/space complexity (assuming semiring operations

have unit time), and we can even reuse the implementation.36

The key property of a semiring is distributivity, as it allows us to factor out

common subexpressions: we can safely rewrite (a b)⊕ (a c) (three operations)

into an equivalent smaller expression a (b⊕ c) (two operations). The factored

expression can be significantly smaller.

Example 9. The example below may be regarded as encoding a weighted directed

graph with two states x and y. The weights in the graph have been left abstract

as symbols a, b, c, and d.
x += a * x.
x += b * y.
y += c * x.
y += d * y.
y += 1. % final state

x y

a
b

c

d

We can translate the Dyna program into a system of equations:

x = a x⊕ b y

y = c x⊕ d y⊕ 1

The solution to the system of equations is a map where the value associated with

x is the set of all paths starting in state x and ending in state y, and the value

associated with y is the set of all paths starting in state y and ending in state y.

In this graph, there are infinitely many paths, and yet, we can express them as a

small set of equations. Below we consider replacing the weights (a, b, c, d) with
36Although certain semirings may allow for additional efficiency shortcuts that others do not,

certain implementations may assume properties beyond the basic semiring axioms.

43



values in a variety of semirings. In each case, we describe the interpretation of

the semiring values associated with x and y.

• ⟨{false, true} ,∨,∧, false, true⟩where true is placed on each edge =⇒ y is reach-

able from x, and y is reachable from y.

• ⟨R ∪ {∞} ,+, ·,∞, 0⟩ =⇒ the total weight of all paths from x to y and y to y.

• ⟨R,min,+, 0, 1⟩ =⇒ the least cost path from x to y and y to y.

•
〈
2Σ

∗
,∪, ·, ∅, ε

〉
where Σ is the alphabet {a, b, c, d} =⇒ the (regular) formal

language that describes the set of paths from x to y and from y to y.

This is just a small example of what we can do by swapping the semiring and

keeping the Dyna program essentially the same.

Semiring Compendium

Below we list several commonly used semirings and some applications where

they appear. Many of these semirings are available in the Dyna library https:

//github.com/timvieira/dyna-pi. We do not have a particular organizing principle

for this list, but we hope that it may serve as a useful reference for some readers

and that it illustrates that semirings can do some surprising things.

Logic

Boolean semiring ⟨{false, true} ,∨,∧, false, true⟩ are used to test reachabil-

ity in graphs and, more generally, provability of items under the rules of the
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program. Its star operation is (false)∗ = (true)∗ = true

Multi-valued logic.

• Three-valued logic ⟨{true, false, unk} ,max,min, false, true⟩ where false <

unk < true.37

• Fuzzy sets ⟨[0, 1],max,min, 0, 1⟩ is related to fuzzy sets (Zadeh, 1965).38

• Łukasiewicz semiring ⟨[0, 1],max,max(0, x+ y − 1), 0, 1⟩ (Łukasiewicz, 1920)

These semirings are each 0-closed; thus, their star operations can be obtained

using the K-closed shortcut (3.4).

Arithmetic semirings

• Counting semiring: ⟨N,+, ·, 0, 1⟩. As the name suggests, this semiring is

used to count things, such as the number of paths between two nodes in a

graph. If N is augmented with∞, then a∗ = 1 if a=0 else∞.

• Integer semiring: ⟨Z,+, ·, 0, 1⟩. Its star operation is 0∗ = 1, a∗ =∞ if a >

0, and undefined if a < 0.

• Real semiring: ⟨R,+, ·, 0, 1⟩. If we extend R with∞, we have a∗ = 1
1−a

if

| a | < 1, ∞ if a ≥ 1, and it is undefined if a ≤ −1. So, unfortunately, this

semiring does not have complete support for solving the infinite series.

37Often ⟨false, unk, true⟩ are encoded as ⟨−1, 0,+1⟩.
38A fuzzy set extends an ordinary set to support graded membership that indicates the extent

to which a given element belongs to a given set (0 meaning definitely not in the set, and 1
meaning definitely in the set).
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• Nonnegative-real semiring: ⟨R≥0 ∪ {∞} ,+, ·, 0, 1⟩. This semiring is used

for computing the normalization constant of a probabilistic model (Good-

man, 1999). Its star operation is a∗ = 1
1−a

for a < 1 and∞ otherwise. Thus,

to be closed, we require∞ to be added to the set R.

• Log-nonnegative-real semiring:
〈
R ∪ {−∞,∞} ,+

log

,+,−∞, 0
〉

where

x+
log

y
def
= log(exp(x)+exp(y)).39 This semiring is isomorphic to the nonnegative-

real semiring; however, it often preferred as it can avoid certain numerical

issues.40 Its star operation is a∗=− log(1− exp(a)) if a ≤ 0 and∞ otherwise.

• First-order expectation semirings (Eisner, 2001) can be used to com-

pute first-order statistics, such as the expected error rate, the entropy, or

the expected feature counts.

• Second-order expectation semirings (Li and Eisner, 2009) can be used

to compute second-order statistics, such as the variance of the error rate,

the gradient of entropy, and the covariance matrix of feature counts.

• K-collapsed natural numbers ⟨{0, ···, K},min(K, x+y),min(K, x·y), 0, 1⟩

can be used as guard rails that prevent infinite running times due to count-

ing off to infinity. It is isomorphic to the boolean semiring when K=2. Its

star operation is a∗ = 1 if a=0 else K.

39For speed and numerical precision, the log-space addition operation should not be computed as
written, it should be computed using a library function (Mächler, 2012). The numpy library for
Python provides the function numpy.logaddexp for this purpose.

40We also mention the log-real semiring (Li and Eisner, 2009, Table 3), which extends the
log-nonnegative-real semiring with an additional sign bit so that negative numbers can be
represented.
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Optimization

These semirings are often used when computing the minimum/maximum

values over some set of values, for example, the weighted set of paths in a graph.

• The tropical semiring (aka min-plus semiring) ⟨R ∪ {∞} ,min,+,∞, 0⟩

is used to find the shortest path or cheapest derivation. Its star operation

is a∗ = 0

• The arctic semiring (aka max-plus semiring) ⟨R ∪ {−∞} ,max,+,−∞, 0⟩

is used to find the longest path or highest-weight derivation. Its star opera-

tion is a∗ = 1⊕ a if a ≤ 0 else∞

• The Viterbi semiring (aka max-times semiring) ⟨[0, 1],max, ·, 0, 1⟩ is

used to find the most probable explanation (MPE) in a probabilistic model.

MPE corresponds to maximum a posteriori (MAP) decoding when the model

does not have latent variables. Its star operation is a∗ = 1. If we broaden

the carrier set with numbers > 1, we have to extend the definition to a∗ =∞

for a > 1.

• The min-times semiring ⟨R≥0∪{∞} ,min, ·,∞, 1⟩ can be used to find the

least probable derivation. Its star operation is a∗ = 1⊕ a

These semirings can be augmented with additional bookkeeping to return an

argmin/argmax (or even the set of argmins/argmaxes) in addition to the min/max.

It is also possible to make the elements being compared in these optimization
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semirings tuples and to compare them under a lexicographic ordering. This is

one way to keep track of back pointers and to add tie-breaking operations.

The maximum-capacity semiring ⟨R ∪ {−∞,∞} ,max,min,−∞,∞⟩ can be

used to find the maximum capacity path in a graph. It is 0-closed so a∗ = 1.

The K-best semiring (top-K semiring or bottom-K semiring) extends the

optimization semirings to provide the K-best alternatives where K ≥ 0 is a fixed

constant.41 The K-best semirings work with any monotonic product operations,

which include multiplication (by nonnegative numbers), Cartesian products, and

addition. Let ⟨A, , ε⟩ be a monoid. Suppose that it is partially ordered under ≼

and the operation is monotonic.

• V def
=
{

sortK≼ (a1 ··· aK) | a1 ... aK ∈ AK
}

: each element of this set is a length-K

sorted list of elements from A. Here the function sortK≼ takes a sequence,

sorts it under ≼, and truncates only to include the K smallest elements.

• A⊕B def
= sortK≼ (A ∪B)

• A B
def
= sortK≼ ([a b | a ∈ A, b ∈ B])

• 0
def
= []

• 1
def
= [ε]

41Goodman (1998) gave the K-best semiring, which eagerly combines the top-K values for some
fixed K.42 Later, this approach was generalized (Huang and Chiang, 2005) to allow the K-best
list to be computed lazily (and without knowledge of K), which can be significantly faster as
many of those K-best lists are not even used (e.g., a K-best list of a span that does not appear
in any complete parse). The implementation details for lazily combining streams efficiently
are given in Huang and Chiang (2005).
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Since this semiring is (K−1)-closed. We can use the truncated sum to implement

the star operation a∗ =
∑K−1

k=0 a
k.

Matrices

The semiring of matrices (Lehmann, 1977) is important as we will use it in

§5.3 to solve certain linear families of infinite sums.

Definition 21 (Matrices over a semiring). We can “lift” any base semiring

⟨V,⊕, , 0, 1⟩ into a semiring over square matrices
〈
VD×D,+, ,0,1

〉
where D is

a set.43 The matrix addition and multiplication operations (given below) are

a straightforward generalization of the usual matrix multiplication on R. Let

A,B ∈ VD×D.

• [A+B]ij
def
= Aij ⊕Bij

• [AB]ik
def
=
⊕
j∈D

Aij Bjk

• [0]ij
def
= 0

• [1]ij
def
= 1 if i=j else 0

The star operation A∗ can be computed as follows. If |D | = 1, then A∗ = [a]∗ = [a∗].

Otherwise, |D | > 1 and we can decompose A into nontrivial blocks ⟨B,C,D,E⟩

and apply the following blockwise recursion.

A∗ =

[
B C
D E

]⋆
=

[
B∗ +B∗C∆∗DB∗ B∗C∆∗

∆∗DB∗ ∆∗

]
(3.5)

43We have denoted the juxtaposition operation (e.g., AB) as , the so-called “visible space.”

49



where ∆ = E+DB∗C. It is straightforward to verify that each recursive call to (·)∗

is decreasing in size; thus, the recursive definition is well-founded. Furthermore,

if the blocks are chosen to be equal in size, then the runtime is O
(
|D |3

)
. We refer

the reader to Lehmann (1977) for proof of correctness and further discussion.

Provenance semirings

Provenance semirings (Green, Karvounarakis, et al., 2007; Green and

Tannen, 2017; Cheney et al., 2009; Schlund, 2016) are used in database systems

to validate or explain query results. Similarly, “derivation semirings” (Goodman,

1998) can be used to encode the set of “derivations” for a given item.44 Some

examples of provenance semirings given in Green, Karvounarakis, et al. (2007)

include the following:

• The set semiring
〈
2Σ,∪,∩, ∅,Σ

〉
where Σ is a base set can be used to track

the possibility of events in a system.

• The why semiring
〈
22

Σ
,∪, {x ∪ y}x∈X,y∈Y , ∅, {∅}

〉
where Σ is a base set.

The base set Σ is a set of annotations; the values computed with this

semiring are the combinations of annotations required for a given tuple to

appear in answer to a query.

• The lineage semiring
〈
2Σ ∪ {⊥} ,∪,∪,⊥, ∅

〉
where Σ is a base set and ⊥ is

44Note: Goodman’s notation of a “derivation” is different from our notion (which is formalized
later in § 4). In particular, his notion is less general than ours because ours is not built
from semiring operations: our notion of a derivation is given by nested rules, which are not
multiplicatively associative.
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a special element satisfying the semiring properties of 0. In the context of a

graph, the lineage semiring determines the subset of reachable arc labels.

Formal Languages

Formal languages:
〈
2Σ

⋆
,∪, ·, ∅, ε

〉
where Σ is a set of symbols and Σ⋆ denotes

the set of strings composed of those symbols, ε is the empty string, and · denotes

string concatenation. The semiring of formal languages can be used to enumerate

the set of strings accepted by a context-free grammar, a finite-state automaton,

and many other formalisms. There are, unfortunately, no shortcuts for computing

the star operation. Finite-state automata can compactly represent certain

infinite sets of strings; they are closed on the union, concatenation, and star

operations.45

Weighted formal languages: The semiring of formal languages can be

extended to semiring-weighted languages, where a semiring weight is assigned

to each string. Let ⟨V,⊕, , 0, 1⟩ be a base semiring. Let Σ be an alphabet as in

the semiring of formal languages. The semiring of weighted formal languages〈
V̂, ⊕̂, ,̂ 0̂, 1̂

〉
is defined as follows. Let V̂ = VΣ∗

= Σ∗ → V be the set of all

functions from strings in Σ∗ to values in the base semiring. Let a, b ∈ V̂ and

x ∈ Σ∗:

• [a ⊕̂ b](x) def
= a(x)⊕ b(x)

45Although context-free languages (CFLs) are also closed under the semiring operations, the
representations of CFLs (i.e., context-free grammars and pushdown automata) do not have
(complete) algorithms to test the equality of the context-free languages that they represent,
severely limiting their utility as a computational representation.
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• [âb](x) def
=

⊕
x: x=y·z

a(y) b(z)

• [0̂](x)
def
= 0

• [1̂](x)
def
= 1 if x=ε else 0

There are, unfortunately, no shortcuts for computing the star operation.

Sets of Vectors

• The semiring of semilinear sets is ⟨2NΣ
,∪,+, ∅, {0}⟩ where X + Y

def
=

{x+ y}x∈X,y∈Y . This semiring can be used to compute the Parikh image of

a formal language with alphabet Σ.46 We refer the reader to Schlund (2016,

Ch. 5) for further discussion and efficient implementation.

• The Pareto frontier semiring is ⟨Pareto efficient sets of vectors, pareto(X∪

Y ), pareto(X+Y ), ∅, {0}⟩. The function pareto filters the set of vectors to those

that are Pareto efficient. A set of vectors is Pareto efficient if and only if

each of its vectors is non-dominated. A vector is said to dominate another

vector if it is ≤ all the other vectors in all dimensions and < in at least

one dimension. The set of Pareto efficient vectors represents the optimal

trade-offs between different objectives or criteria (i.e., where improving

one objective comes at the cost of worsening another). The Pareto frontier

semiring on RD
≥0 is 0-closed, so its star operation is X∗ = 1. This semiring

is discussed further in Gondran and Minoux (2008).

46The Parikh image of a language L is defined as Parikh(L)
def
= {bag(w) | w ∈ L} where bag(w)

def
=

Ha | a ∈ wI. Placing the symbols of each word into a bag removes their order.
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• The semiring of convex sets in a vector space is ⟨convex sets over a vec-

tor space, convexhull(X∪Y ), convexhull(X+Y ), ∅, {0}⟩. For a finite-dimensional

vector space, we may restrict from convex sets to polytopes and still have a

semiring—the advantage being that each polytope can be computationally

represented as a finite set of vertices, yielding polytime operations.47 Dyer

(2013) showed how to use this semiring to perform efficient minimum error

rate training (Och, 2003), a common technique used in machine translation.

An earlier citation for this semiring is Iwano and Steiglitz (1990).

Other

• Polynomials, and formal power series (Kuich, 1997; Green, Karvounarakis,

et al., 2007) over semirings form a semiring in each case.

• Baras and Theodorakopoulos (2010) and Gondran and Minoux (2008) give

many interesting semirings for network analysis, including semirings to

enumerate graph cuts and bridges.

• Many works use semirings to perform dataflow analyses on programs

(Dolan, 2013; Esparza et al., 2010; Cousot and Cousot, 1977).

47The semiring of convex sets is similar to the Pareto frontier semiring. The difference is that
convex sets find the set of optimal derivations with respect to linear combinations of the base
objectives.
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Chapter 4

Semantics of Dyna Programs

In §2, we introduced the Dyna language through a number of examples. In

this chapter, we will formalize the meaning of a Dyna program—i.e., what it

actually computes—as a certain sum over potentially infinitely many semiring-

weighted derivations (§4.1).48 We illustrate the challenges with several simple

examples. Quite surprisingly, we can often compute—or, at least accurately

approximate—these infinite sums. We describe fixpoint iteration as the mathe-

matical algorithm framework for computing these semantics. We later (§5) reify

the framework in executable algorithms.

48The prior formalization of Dyna (Eisner, Goldlust, et al., 2005) did not describe Dyna’s
semantics as a sum over weighted derivations, which meant that it was mismatched with other
work on semiring-weighted deduction, e.g., Goodman (1999). This mismatch, however, enables
the generalization of Dyna 1 to the Dyna 2 language (Eisner and Filardo, 2011).
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4.1 Total Value of All Derivations

Example 10. Consider the following program, which encodes a geometric series:

p =

{
56 x += b.
57 x += a * x.

The meaning of the item x in this program is a semiring value, which we denote

as pJxK. The value of x as a function of a and b is pJxK = b + a * b + a * a * b +

a * a * a * b+a * a * a * a * b+a * a * a * a * a * b+a * a * a * a * a * a * b+ ··· . We arrive

at this (infinite) sequence by enumerating the set of derivations of x under the

rules in p. The derivations of an item are a set denoted p{x}. Below, we show 7 (of

the infinitely many) derivations of the item x. We see that the values at the leaves

of each derivation correspond to the terms in the summation above.

p{x} =



x

b

x

a x

b

x

a x

a x

b

x

a x

a x

a x

b

x

a x

a x

a x

a x

b

x

a x

a x

a x

a x

a x

b

x

a x

a x

a x

a x

a x

a x

b

· · ·


At a high level, we generate these derivations by repeated substitution in the rules

matching a subgoal.49 Below, we show these rule substitutions by nesting rules

within other rules. Each of these nested rules encodes a derivation tree.

49We will make this formal in Definition 23.
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58 x += b.
59 x += a * (x += b).
60 x += a * (x += a * (x += b)).
61 x += a * (x += a * (x += a * (x += b))).
62 x += a * (x += a * (x += a * (x += a * (x += b)))).
63 x += a * (x += a * (x += a * (x += a * (x += a * (x += b))))).
64 x += a * (x += a * (x += a * (x += a * (x += a * (x += a * (x += b)))))).
65 ···

Next, we can summarize each derivation by its value—i.e., the product of the

values of its leaves.50 By doing so, we recover the terms of the infinite series:

66 x += b.
67 x += a * b.
68 x += a * a * b.
69 x += a * a * a * b.
70 x += a * a * a * a * b.
71 x += a * a * a * a * a * b.
72 x += a * a * a * a * a * a * b.
73 ···

Notice that our ability to expand x into a set of derivations whose values can be

summed requires distributivity.

We now look at an example program containing variables.

Example 11. Consider CKY (Example 6; repeated below) where we have aug-

mented the original program with some input data:

74 β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).
75 β(X,I,K) += γ(X,Y) * β(Y,I,K).
76 β(X,I,K) += γ(X,Y) * word(Y,I,K).
77 goal += β(s,0,N) * len(N).

78 % context-free grammar rules
79 γ(s,a) += v1.
80 γ(s,s,s) += v2.

81 % encoding of the input sentence "a a a a"
82 word(a,0,1) += w1. word(a,1,2) += w2. word(a,2,3) += w3. word(a,3,4) += w4.
83 len(4) += 1.

where v1, v2, w1, w2, w3, w4 ∈ V. Now, consider the goal item. It has five derivations

under the CKY program’s rules:

50The product uses an in-order traversal of the tree given by the nested terms to preserve the
order of possibly noncommutative product operations.
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goal

β(s,0,4)

γ(s,s,s)

v2

β(s,0,1)

γ(s,a)

v1

word(a,0,1)

w1

β(s,1,4)

γ(s,s,s)

v2

β(s,1,2)

γ(s,a)

v1

word(a,1,2)

w2

β(s,2,4)

γ(s,s,s)

v2

β(s,2,3)

γ(s,a)

v1

word(a,2,3)

w3

β(s,3,4)

γ(s,a)

v1

word(a,3,4)

w4

len(4)

1
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γ(s,s,s)
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γ(s,s,s)

v2
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β(s,3,4)

γ(s,a)
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len(4)

1

goal
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β(s,0,2)

γ(s,s,s)
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β(s,0,1)

γ(s,a)

v1

word(a,0,1)

w1

β(s,1,2)

γ(s,a)

v1

word(a,1,2)

w2

β(s,2,4)

γ(s,s,s)

v2

β(s,2,3)

γ(s,a)

v1

word(a,2,3)

w3

β(s,3,4)

γ(s,a)

v1

word(a,3,4)

w4

len(4)

1

goal

β(s,0,4)

γ(s,s,s)

v2

β(s,0,3)

γ(s,s,s)

v2

β(s,0,1)

γ(s,a)

v1

word(a,0,1)

w1

β(s,1,3)

γ(s,s,s)

v2

β(s,1,2)

γ(s,a)

v1

word(a,1,2)

w2

β(s,2,3)

γ(s,a)

v1

word(a,2,3)

w3

β(s,3,4)

γ(s,a)

v1

word(a,3,4)

w4

len(4)

1

goal

β(s,0,4)

γ(s,s,s)

v2

β(s,0,3)

γ(s,s,s)

v2

β(s,0,2)

γ(s,s,s)

v2

β(s,0,1)

γ(s,a)

v1

word(a,0,1)

w1

β(s,1,2)

γ(s,a)

v1

word(a,1,2)

w2

β(s,2,3)

γ(s,a)

v1

word(a,2,3)

w3

β(s,3,4)

γ(s,a)

v1

word(a,3,4)

w4

len(4)

1
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Again, we see that each derivation’s internal nodes are labeled with items, and its

leaves are semirings values. Each derivation’s value is the product of its leaves.

To determine the value of the goal we sum the values of each of its derivations:

JgoalK = (v2 * v1 * w1 * v2 * v1 * w2 * v2 * v1 * w3 * v1 * w4 * 1

+ v2 * v1 * w1 * v2 * v2 * v1 * w2 * v1 * w3 * v1 * w4 * 1

+ v2 * v2 * v1 * w1 * v1 * w2 * v2 * v1 * w3 * v1 * w4 * 1

+ v2 * v2 * v1 * w1 * v2 * v1 * w2 * v1 * w3 * v1 * w4 * 1

+ v2 * v2 * v2 * v1 * w1 * v1 * w2 * v1 * w3 * v1 * w4 * 1)

The other items in the program also have derivations, and values derived from

those derivations, but we will not show those to keep the example brief.

Next, we formalize the concepts introduced in the example above.

Definition 22. The meaning of a Dyna program51 p is a valuation pJ·K : H→

V,52 which computes the sum over derivation values.53

pJxK def
=


x if x ∈ V
BJxK if x ∈ B⊕
δ∈p{x}

yield(δ) otherwise
(4.1)

where BJxK is the valuation for built-in relations (items in B),54 and p{x} (Def-

inition 23, below) is the (possibly infinite) set of all derivations of the item x

and yield(δ) ∈ V is the product of the values in the leaves of the derivation δ (in

left-to-right order). We note that when p{x} is infinite, (4.1) might be undefined
51Note that the Dyna 2 semantics (discussed in §D) are not based on such a sum over derivations.
52We may sometimes denote the set of valuations as VH rather than H→ V.
53Typically, pJ·K assigns non-0 values to only a finite subset of H (that are not builtins).
54Unlike program items, built-in relations are defined directly by their valuation; In other

words, the valuation for builtins is opaque: we do not have a collection of rules that define the
builtins—they are essentially just foreign procedure calls. For simplicity, we assume that the
set of builtins (i.e., x ∈ B) is disjoint from the items defined in the program.
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(e.g., Example 12, below). When the program p is clear from context, we may write

J·K as a shorthand for pJ·K.

Definition 23. We define a derivation δ in program p as a tree structure that

satisfies one of the following conditions:

(i) δ ∈ V

(ii) δ is of the form x⊕= v where x is a builtin and v = BJxK

(iii) δ is a product of derivations δ1 ··· δK

(iv) δ is of the form (x⊕= δ1 ··· δK) where

(a) δk are valid derivations for each k

(b) x⊕= head(δ1) ··· head(δK) is a grounding of a rule in p where head(δk)

gives δk’s root label for each k.55

These cases define a labeled tree with its internal nodes labeled by rules (or

built-in relations) and its leaves labeled by values. Notice that valid derivations

may contain variables—meaning that any grounding of its variables is also a

valid derivation. The value of a derivation δ is yield(δ); we sometimes write JδK

intead of yield(δ). Finally, let p{x} denote the set of all derivations of the item

x. Technically, we want the smallest set of objects satisfying the description of a

derivation, as this disallows derivations of infinite height.56

55Recall that we also use head(·) to access the head of a rule; the reuse of this notation is not
coincidental, as each derivation is built from nested rules (with ground variables).

56The set of derivations can often be represented compactly using a packed forest data structure,
which is also known as a B-hypergraph (Gallo et al., 1993). By analogy, a set of derivations is to
a packed forest as a set of strings is to a finite-state automaton. In both cases, we can represent
certain possibly infinite sets of the respective structures efficiently by exploiting structure
sharing. Packed forests are commonly used in NLP to represent parse forests and possible
translation outputs (e.g., Klein and Manning (2001), Li and Eisner (2009), Huang (2008), and
Eisner, Kornbluh, et al. (2006)).
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Definition 24. The height of a derivation is defined as follows

height(δ)
def
=


0 if δ is a constant or builtin
max(height(δ1), ... , height(δK)) if δ is a product δ1 ··· δK

1 + height(body(δ)) if δ is a derivation by a rule

Not all infinite sums converge to a well-defined value. If a given item in the

program does not have a well-defined sum over derivations, then its semantics

are also not well-defined. In §4.4, we describe the family of ω-continuous semir-

ings (Kuich, 1997), which are guaranteed to have a well-defined value. However,

we do not require the user to use such semirings.

4.2 Fixpoint Approximation

Definition 25. We can rearrange (4.1) into a system of equations, known as the

fixpoint equations57 for a given program p:58

JxK =
⊕
R∈p,

(x⊕= y1 ··· yK)∈Γ(R)

Jy1K ··· JyKK for x ∈ H (4.2)

Recall that Γ(R) is the set of all groundings of the rule R (defined in §2).

The fixpoint equations suggest a recursive algorithm for evaluating J·K. That

algorithm would compute JxK by recursively computing the values of all JykK

items that JxK depends on and plugging them into (4.2). However, this algorithm

will recurse forever anytime it encounters a cycle.

57A fixpoint equation has the form x = f(x) for some vector-valued function f .
58Dyna 2 does not have the sum-over-derivations semantics—its semantics are any fixpoint of a

generalized version of (4.2). For further discussion, we refer the reader to §D.
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Another important point about cyclic fixpoint equations is that they may

admit multiple solutions, including non-solutions to Definition 22.59 Thus, the

fixpoint equations are underspecified: they provide necessary, but not sufficient,

conditions for a solution to equal the potentially infinite sum in Definition 22.

Consider the following example.

Example 12. The following Dyna program encodes the geometric series: JxK =

1 + a+ a2 + a3 + ··· where a = JaK.

84 x += 1.
85 x += a * x.

Each term in the geometric series corresponds to the value of a derivation of x.

There are infinitely many derivations for x under the program. If we plug this

program into the fixpoint equations (4.2), we see that x depends on itself:

JxK = J1K + JaK · JxK = 1 + a · JxK

Since we are in the real semiring, we can use subtraction and division as a

shortcut to solve this equation:

JxK =
1

1− a

Notice, however, the solution only corresponds to the sum over derivations (i.e., the

value of the geometric series) when | a | < 1. The sum-over-derivations semantics

for JxK when a ≥ 1 ought to be ∞. Reassuringly, ∞ satisfies the necessary

conditions given by the fixpoint equations: ∞ = 1 + a · ∞ when a > 0. Notice,

59In the acyclic case, however, the fixpoint equations define a unique value for each item x that
equals the sum over (finitely many) derivations JxK (Definition 22).
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also, that desired semantics of ∞ does not correspond to the minimal fixpoint

since 1
1−a

<∞. When a < −1, the series does not have a well-defined solution as

it oscillates between ±∞; however, the fixpoint equations have the solution 1
1−a

.

Below, we give another example of underspecification that arises from having

multiple solutions to a quadratic system:

Example 13. The following program encodes the Catalan series: JxK = c+ 2 c2 +

5 c3 + 14 c4 + 42 c5 + 132 c6 + ··· where c def
= JcK.

86 x += c.
87 x += x * x.

Now, we consider the fixpoint equations for this program’s value. We see that the

fixpoint equations admit two solutions:

JxK = JcK + JxK2 [def. of fixpoint]
JxK2 − JxK + c = 0

JxK ∈ 1±
√
1− 4 c

2
[by quadratic formula60]

Assuming 0 ≤ c ≤ 1
4
, the smaller solution 1−

√
1−4 c
2

corresponds to the sum over

derivations. The larger solution 1+
√
1−4 c
2

is a fixpoint, but it is not equal to the

sum over derivations.

60Quadratic formula: a x2 + b x+ c = 0 ∧ a ̸= 0 ⇐⇒ x = −b±
√
b2−4 a c
2a .
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4.3 Fixpoint Iteration

Fixpoint iteration61 is a general scheme for approximating J·K. This scheme

defines a sequence of approximate valuations ν(0), ν(1), ..., ν(T ), which approach

J·K as T →∞. The sequence is defined as

{
ν(0) = ⊥
ν(t+1) = Tp ν

(t)
(4.3)

where ⊥ is the valuation for a program with no rules,62 and Tp is the step

operator for a program p:

(Tp ν)[x]
def
=
⊕
R∈p,

(x⊕= y1 ··· yK)∈Γ(R)

ν[y1] ··· ν[yK ] for x ∈ H (4.4)

Equation (4.5) is simply the abstraction of the right-hand side of (4.2) from

Definition 25 into a function of the valuation ν. We can rephrase the fixpoint

equations (Definition 25) as a solution ν∗ such that

ν∗ = Tp ν
∗ (4.5)

Thus, like (4.2), (4.5) may admit multiple fixpoints or none at all. In practice,

a suitable fixpoint ν∗ is often computed by some variant of fixpoint iteration,

which initializes ν to ⊥, and repeatedly updates ν to Tp ν until it converges to

some ν∗ = TpTp ···Tp⊥.63

61Fixpoint iteration—in the setting of logic programming—is known as forward chaining or
bottom-up evaluation (Ullman, 1988; Goodman, 1999; McAllester, 2002; Eisner, Goldlust,
et al., 2005).

62Note: according to Definition 22, the valuation HIJ·K for a program with no rules HI is not
a completely empty valuation, which would map all of its arguments to the value 0; rather,
constants and built-in relations may have non-0 values under ⊥ = HIJ·K.

63For some programs, this procedure may never converge or may take infinite time to converge.
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Proposition 1. The valuation estimate at time t given by fixpoint iteration

ν(t) = Tt
p⊥ equals the total value of all derivations of height ≤ t.

Proof (Sketch). We start with ν(0)=⊥. From there, we build height ≤ 1 deriva-

tions by extending the height ≤ 0 derivations (i.e., constants and builtins ap-

pearing on the right-hand sides of the rules in the program). From there, each

application of the step operation combines the valuations of height ≤ t deriva-

tions by applying the rules of the program to derive the values of all height ≤ t+1

derivations.64 ■

Fixpoint iteration is the mathematical basis for the algorithms we develop

in § 5. Assuming that the valuation has a convergent sum, fixpoint iteration

will diligently compute the sum (up to each height) until every height has

been covered; thus, it converges in the limit to the value of J·K. In that later

section, we will discuss and address computational inefficiencies and provide

implementation details. We will also describe an accelerated fixpoint iteration

variant based on Newton’s method for solving equations.

In the boolean semiring, however, there is always a unique minimal fixpoint ν∗, and for each
item, x , ν[x] reaches ν∗[x] in finite time.

64This is a form of dynamic programming: ν(t) is a memo table for a version of the computation,
which makes the height t an argument to break cycles.
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4.4 Convergence Theory

This section briefly overviews the basic results found in the literature on

semiring-weighted systems. Our goal is primarily to review; no new results are

presented in this section.

An easy case where convergence is guaranteed is when the fixpoint equations

are acyclic (i.e., the set of derivations is finite); here, there is no issue computing

its value by fixpoint iteration or—better yet—by dynamic programming. The

tricky cases are cyclic equations, as they denote sums over of infinitely many

derivations, which may not be well-defined.

We have seen that not all fixpoints (Definition 25) are solutions to (4.1).

However, fixpoint iteration (§4.3) is a procedure that sums the total value of

derivations by their height (Proposition 1); thus, the fixpoint iterates approach

J·K assuming it is well-defined. To formalize what is meant by approaching

a value, we require a notion of topology; we will describe a commonly used

ω-continuous topology in this section.

Kuich (1997) provides sufficient conditions for when fixpoint iteration—

starting from a valuation that assigns all items the value 0—converges in

the limit to J·K (Definition 22).65 The theory assumes that the semiring is

ω-continuous (Definition 28), which fortunately includes most semirings of inter-

est in NLP. The class of ω-continuous semirings has useful closure properties to

ensure that the solution to the infinite sum over derivations equals the supre-

65We found out about this work thanks to Goodman (1998, §2.3.1–2.3.2).
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mum of the partial sums (under an appropriate ordering relation). We note that

some semirings—including ⟨R,+, ·, 0, 1⟩ (unless it is restricted to R≥0)—are not

ω-continuous—essentially because they include negative numbers, which means

they can lead to undefined limits.

Before defining ω-continuous semirings, we define an ordering relation on

semirings as it provides a topology on the semiring with which we can employ

the usual mathematical concepts relating to convergence, such as the supremum.

Definition 26. The natural order (denoted by ⊑) on the members of a semiring

⟨V,⊕, , 0, 1⟩ is defined follows: ∀ a, b ∈ V : (a ⊑ b) ⇐⇒ (∃ c ∈ V : a⊕ c = b). The

natural order is a preorder on V. However, when ⊑ defines a partial order, we

say that the semiring is naturally ordered.

Example 14 (Examples and Non-examples of Naturally Ordered Semirings).

• The natural order on real (and integer) semirings does not define a partial

order: ∀ a, b there always exists c = (b− a) that satisfies a⊕ c = b. Thus, ⊑

does not satisfy the antisymmetry requirement of partial order.

• The natural order on the counting semiring (or the nonnegative-real semir-

ing) coincides with ≤: ∀ a, b there exists c such that a⊕ c = b if and only if

b− a ∈ N. In other words, if a ⊑ b ⇐⇒ a ≤ b.

• The natural order on formal languages coincides with the ⊆ relation on sets:

For L1, L2 ∈ 2Σ
⋆, L1 ⊑ L2 ⇐⇒ L1 ⊆ L2.
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Proposition 2. (Kuich, 1997, Theorem 2.1): Every naturally ordered semiring is

monotonic (under ⊑), and 0 is its smallest element (∀ a ∈ V : 0 ⊑ a).

Thus, for naturally ordered semirings, each semiring operation is nondecreasing

on the ⊑-lattice on V. The natural order can be extended to valuations (VH):

let ν, ν ′ ∈ VH : ν ⊑ ν ′ ⇐⇒ ∀x ∈ H : ν[x] ⊑ ν ′[x]. Next, we observe that

the step operator Tp for a given program p is monotone: ν ⊑ ν ′ =⇒ Tp ν ⊑

Tp ν
′. Thus, the fixpoint iteration iterates increase ⊑ on each iteration until

they eventually saturate; no oscillation can cause the sum to be ill-defined.

However, additional technical details are required to formally push this idea

into a theorem; specifically, it is sufficient for the semiring to be ω-continuous

(defined below).

Definition 27. (Kuich, 1997, pages 611–612): A semiring is complete if it has an

infinite sum operation (
⊕

) that satisfies the following properties for all countably

infinite sets I:

(i) Base cases:⊕
i∈∅ ai = 0,

⊕
i∈{j} ai = aj, and

⊕
i∈{j,k} ai = aj ⊕ ak for j ̸= k

(ii) Infinite commutativity and associativity:⊕
J∈J

⊕
j∈J aj =

⊕
i∈I ai where J is any partitioning of I

(iii) Infinite distributivity:

c
(⊕

i∈I ai
)
=
⊕

i∈I(c ai) and
(⊕

i∈I ai
)
c =

⊕
i∈I(ai c) for all c ∈ V

Definition 28. Suppose that ⟨V,⊕, , 0, 1⟩ is a naturally ordered semiring, and

its infinite sum operator is satisfies
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⊕
i∈N

ai = sup{a1⊕ ··· ⊕ ai | i ∈ N} for all infinite sequences ⟨ai⟩i∈N (4.6)

where the sup66 is taken with respect to the ordering⊑. If this semiring is complete,

then we say that the semiring is ω-continuous.

The definitive reference for the study of these assumptions is Kuich (1997).

These are the primary theoretical assumptions studied in work on semirings (e.g.,

Goodman (1998), Goodman (1999), Esparza et al. (2007), Green, Karvounarakis,

et al. (2007), and Mohri (2009)).

Convergence-rate analysis. It is possible to study fixpoint iteration’s

rate of convergence when p is a contraction mapping. The limit analysis above

makes weaker assumptions (i.e., ω-continuity), which are sufficient to ensure

convergence in the limit, but it does not characterize the rate of convergence.

To use the contraction mapping analysis in our setting, we require that

the set of valuation mappings VH is a complete67 metric space—i.e., it

must be equipped with a distance metric ρ : VH × VH → R≥0. For exam-

ple, in the case of the real semiring, we can use the Chebyshev distance

ρ(ν, ν ′) = maxx∈H | ν[x]− ν ′[x] |.68 A complete metric space requires that every

Cauchy sequence ν(0), ν(1), ... has a limit also in VH. We say ν(0), ν(1), ... is a

Cauchy sequence if, for any arbitrarily small distance r > 0, ∃N > 0 such that

66The supremum supS of a subset S ⊆ P from a partially ordered set ⟨P,⊑⟩, is the least element
in P that is greater than or equal to each element of S if such an element exists. The supremum
is sometimes called the least upper bound.

67Note that the meaning of complete here is different from a complete semiring (Definition 27).
68Plenty of other distance metrics are possible for the real semiring, such as the Euclidean and

Manhattan distance metrics.
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∀m,n > N , ρ
(
ν(n), ν(m)

)
< r. We say the step operation Tp for a given program p

is a contraction mapping if

∀ν, ν ′ ∈ VH : ρ(Tp ν,Tp ν
′) ≤ λ·ρ(ν, ν ′)

with a contraction rate λ < 1.69 Intuitively, a contraction mapping is a function

that, when applied to any pair of points ⟨ν, ν ′⟩, brings them closer together by

at least a factor of λ. Note that it is not guaranteed that Tp is a contraction

mapping for all programs p.

If Tp is a contraction mapping, then the Banach fixpoint theorem guaran-

tees that the fixpoint iteration sequence ν(0), ν(1), ... is Cauchy, and converges at

a linear rate (as a function of n) to a unique fixpoint ν∗:

ρ
(
ν(n), ν∗

)
≤ λn ·ρ

(
ν(0), ν∗

)
(4.7)

Note that the quantity ρ
(
ν(0), ν∗

)
in the right-hand side of (4.7) cannot be com-

puted; fortunately, we can relax the bound so that it is computable by replac-

ing this quantity with one that can be computed: the size of the first update

R = ρ
(
ν(0), ν(1)

)
. This gives the so-called prior bound:

ρ
(
ν(n), ν∗

)
≤ λn

1− λ
·R (4.8)

This bound can be rearranged to bound the number of iterations (n) that are

needed to ensure that the distance to ν∗ is ≤ ϵ:

69Contraction mappings are a special case of Lipschitz-continuous functions where the function
maps onto itself (i.e., the functions domain and range the same). Thus, the constant λ is
sometimes called a Lipschitz constant.
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n ≥
log
(

ϵ (1−λ)
R

)
log λ

=⇒ ρ
(
ν(n), ν∗

)
≤ ϵ (4.9)

Another useful bound is the posterior bound:

ρ
(
ν(n), ν∗

)
≤ λ

1− λ
·ρ
(
ν(n), ν(n−1)

)
(4.10)

The posterior bound relates the update’s size at iteration n to the remaining

distance to ν∗. The posterior bound shows that if the most recent update (at

iteration n) is small, we are close to the solution. Thus, the posterior bound gives

an approximate termination condition.

λ

1− λ
·ρ
(
ν(n), ν(n−1)

)
≤ ϵ =⇒ ρ

(
ν(n), ν∗

)
≤ ϵ (4.11)

In practice, however, we do not know λ, so the threshold is just on ρ
(
ν(n), ν(n−1)

)
.

Summary

This section formalized the semantics of Dyna programs as a sum over

semiring-weighted derivations. We described fixpoint iteration, the mathemat-

ical basis of the execution algorithms we will develop in § 5. We provided an

overview of the sufficient conditions for which fixpoint iteration converges to J·K.
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Chapter 5

Inference Algorithms

This section develops general algorithms for performing inference in Dyna

programs (i.e., evaluating J·K). These general algorithms are why Dyna programs

do not require the specification of implementation details: programmers provide

a specification of the logic, and the Dyna system takes care of the control flow.

We describe several algorithms:

• In §5.1, we describe three implementations of fixpoint iteration of increasing

sophistication: naïve (§5.1.1), semi-naïve (§5.1.2), and prioritized (§5.1.3).

• In §5.2, we then describe an accelerated fixpoint algorithm, which is based on

a version of Newton’s method for solving fixpoint equations over a semiring

(Esparza et al., 2007).

• In §5.3, we describe a specialized solver for certain linearly recursive pro-

grams. This specialized solver is leveraged as a subroutine by the accelerated

algorithm.
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• In §5.4, we describe a unified, hybrid algorithm that solves large programs

by breaking them up into smaller subprograms that can be solved separately

with the best applicable method.

Solution representations. Recall from §2 that we represent the answer

to a query as a program of a restricted form where each of its rules is simple. A

rule is simple if its body contains only constant values and builtins. We call a

program consisting of only simple rules a simple program. In this chapter, we

use simple programs to represent the valuation function J·K. This allows us to

compactly represent the solutions to certain programs with infinite valuations,

such as70

{
88 x(I) += (I > 0).
89 x(I) += 0.5 * x(I).

solve−−→

{
90 x(I) += 2 * (I > 0).

This generalizes prior work by Eisner, Goldlust, et al. (2005), which required

solutions to be represented as a hash table mapping ground terms to their

values. In our notation, that translates to a restriction that each rule in the

solution has a ground head, and its body is a constant value. The consequence

of their assumption is that they can only represent the solutions to programs

with finitely many non-0 items.

We will use simple programs in our algorithms to represent intermediate

valuation functions. We will use the result-stream manipulation operations

(developed in §3.1) in the algorithms of this section, as they make working it

possible to manipulate these program representations seamlessly.
70We provide additional examples in §A.
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5.1 Algorithms for Fixpoint Iteration

In §4.3, we discussed the mathematical foundation for fixpoint iteration.

Here, we will describe the algorithm procedurally and discuss implementation

details. In the logic programming literature, fixpoint iteration is known under

the names bottom-up evaluation or forward chaining.71,72 We will give three

algorithms of increasing sophistication: naïve (§5.1.1), semi-naïve (§5.1.2), and

prioritized (§5.1.3). We do not recommend using the algorithms naïve (§5.1.1) and

semi-naïve (§5.1.2); we have included them for pedagogical purposes to motivate

the prioritized algorithm (§5.1.3). Our version of prioritized fixpoint iteration

generalizes the forward chaining algorithm of Eisner, Goldlust, et al. (2005) to

support non-range-restricted rules, built-in relations, and delayed constraints.

5.1.1 Naïve Fixpoint Iteration

This section describes our simplest implementation of fixpoint iteration. In

the pseudocode provided in Algorithm 6, we can see that the algorithm is a

remarkably straightforward translation of the mathematical definition of (4.4)

thanks to our abstractions for manipulating streams (§3.1).73

In the code, we initialize the chart m to the empty program HI (i.e., the

program with no rules) so its valuation equals ⊥, as in (4.3). We then repeatedly

71E.g., Ullman (1988), Goodman (1999), McAllester (2002), and Eisner, Goldlust, et al. (2005).
72Our version is most like Eisner, Goldlust, et al. (2005), as it has been generalized to support

semiring values.
73These abstractions allow us to specify each of our inference algorithms as if the program’s

rules do not contain variables.
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Algorithm 6 naive: Solve program p by (naïve) fixpoint iteration
1. def naive(p):
2. ▷ This procedure implements fixpoint iteration (4.3) on the function stepp.
3. m← HI ▷ HI is a program with no rules, its valuation equals ⊥ as in (4.3).
4. while true :
5. m′ ← stepp(m) ▷ Apply the step operation
6. if m = m′ : return m
7. m← m′

8. ▷ The procedure stepp(m) implements Tp(ν) from (4.4); here, the valuation ν is represented as
a program m.

9. def stepp(m):
10. m′ ← HI
11. for (x⊕= y1 ··· yK) ∈ p :
12. m′[x]⊕=m[y1] ··· m[yK ]

13. return m′

apply the step function stepp, which implements Tp from (4.4), until a fixpoint is

reached (i.e., the condition on line 6.6 is satisfied).

We see that stepp(m) implements Tp(mJ·K) as it sums the contributions of each

rule in the program (x⊕= y1 ··· yK) ∈ p by instantiating its body against the

current chart m with the help of the result-stream abstractions: m[y1] ··· m[yK ].

Line 6.12 adds the contributions of the current rule to the next iterate m′ using

m′[x]⊕=m[y1] ··· m[yK ]. It is straightforward to verify that m and m′ are always

simple programs.

We note that the runtime of Algorithm 6 is not as good as it could be. In the

following sections, we will improve upon it in several ways.

Termination condition. Our algorithm’s termination condition (line 6.6)

is m = m′. Termination can be guaranteed for the following cases:

• Finite acyclic programs (regardless of the semiring).
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• Finite programs over a semiring that is guaranteed to saturate after a

finite number of iterations. The family of K-closed semirings (Definition 19)

is a setting where this is always true; this family includes many important

semirings such as the boolean semiring and the optimization semirings

(§3.3). However, it does not include many important semirings, such as the

real semiring.

Approximate termination condition. Defining an approximate termi-

nation condition to replace line 6.6 depends on the specific semiring.74 A natural

choice for the real semiring is ∀x : |m[x]−m′[x] | ≤ ϵ for some small threshold

ϵ ≥ 0. For other semirings, | v − v′ | should be replaced with an appropriate

distance metric ρ(v, v′). This choice is inspired by the posterior bound (4.10)

in the Banach fixpoint theorem (discussed in §4.4). The number of fixpoint

iterations required to reach the threshold ϵ may be difficult to bound unless the

step function is a contraction mapping (§4.4).

5.1.2 Semi-Naïve Fixpoint Iteration

The seminaive algorithm is a more efficient implementation of Algorithm 6.

The improvement is based on the observation that on iteration h+1, many

of the values for items in m(h) are unchanged; however, the step operator re-

derives them for m(h+1). The seminaive algorithm refines the induction on height

by precisely deriving the set of derivations with height =h rather than ≤h on

74Our implementation has hooks for defining approximate equality for a given semiring.
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each step. Doing so improves efficiency, as each step does not need to rederive

derivations of lower heights.

Pseudocode is given in Algorithm 7. The algorithm’s structure is similar to

Algorithm 6, except that in addition to m (and m′), we maintain the values of

new heights d (and d′). It is straightforward to verify the invariant that m, d, m′,

and d′ are simple programs. We argue for the correctness of the algorithm in

Proposition 3.

Algorithm 7 seminaive: Solve program p by semi-naïve fixpoint iteration
1. def seminaive(p):
2. m← HI
3. d← stepp(m) ▷ Initialize with step from Algorithm 6
4. while true :
5. ⟨m′, d′⟩ ← step′p(m, d)
6. if m = m′ : return m
7. ⟨m, d⟩ ← ⟨m′, d′⟩

8. ▷ Incremental step function; applies change d to chart m and derives a new change d′.
9. def step′p(m, d):

10. d′ ← HI
11. m′ ← m⊕ d ▷ Accumulate changes
12. for (x⊕= y1 ··· yK) ∈ p :
13. for k ∈ [1:K] :75

14. d′[x]⊕=m′[y[:k)] d[yk] m[y(k:]]

15. return ⟨m′, d′⟩

Should omit constants and builtins;
these are added by line 7.3.

Proposition 3. On iteration h of Algorithm 7 (line 7.7), the value of m is the

valuation function for heights <h, and the value of d is the valuation function

restricted height =h.

Proof (Sketch). According to Definition 24, we obtain a =h+1 derivation when

we apply one rule to a collection of at least one =h derivation and any number of
75For efficiency, the join algorithm should use d[yk] as its outermost loop.
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<h derivations. To illustrate, consider the case of a derivation with 2 children. A

rather direct way to partition the events that create height =h+1 derivations is

the following three cases, which identify all positions where the =h subderivation

can appear:

height


x

y1

<h

y2

=h

 = height


x

y1

=h

y2

=h

 = height


x

y1

=h

y2

<h

 = h+1

However, a more efficient—albeit less obvious—partitioning of the event above

merges the first two cases into one case (≤ h)—giving two cases instead of three:

height


x

y1

≤h

y2

=h

 = height


x

y1

=h

y2

<h

 = h+1

What we have done here is to identify events with their rightmost =h subderiva-

tion.76 We depict the general case below (for k = 1 ... K):

height


x

y1

≤h

yk−1

≤h

yk

=h

yk+1

<h

yK

<h

··· ···

 = h+1 (5.1)

We refer to this strategy for grouping events as the cursor trick. We refer to

the position of the rightmost =h subtree as the cursor as it moves from left to

right in a given rule body to control which version of each subgoal’s value (m, d,

or m′) is used in the update.

76When we consider derivations with more than two children, the benefit of the latter decom-
position becomes more apparent. In the latter decomposition, there are K cases to consider,
whereas the former has O

(
2K
)

because it considers each subset of positions where the maximal
height can appear.
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Algorithm 7 operationalizes this construction as follows. The function step′

derives the values for the set of derivations of the next height (=h+1) by applying

each rule in the program once: for a given rule x⊕= y1 ··· yK ∈ p, we consider

plugging in each item from d as the rightmost = h child. We do so by looping

over values of the cursor k from 1 to K (line 7.13), and applying the update on

line 7.14 (repeated below):

d′[x]⊕=m′[y1] ··· m′[yk−1] d[yk] m[yk+1] ··· m[yK ]

We see that the update has the same pattern as (5.1), which is why d′ corresponds

to values contributed by the set of the derivation of height =h+1. ■

Example 15. We give a simple example of the cursor trick in action.

91 x += y * y * y.
92 y += 2.
93 y += z.
94 z += 1.

We begin by initializing m = HI and d = stepp(m). Then, on the first iteration:

m = HI d =

{
y += 2.
z += 1.

step′

=⇒ m′ =

{
y += 2.
z += 1.

d′ =

{
x += 2 * 2 * 2.
y += 1.

Next, we see the cursor trick in action in d′:

m =

{
y += 2.
z += 1.

d =

{
x += 8.
y += 1.

step′

=⇒ m′ =

{
x += 8.
y += 3.
z += 1.

d′ =

{
x += 1 * 2 * 2.
x += 3 * 1 * 2.
x += 3 * 3 * 1.

Next, we apply the update and see that x has the correct value of 27 in m′:

m =

{
x += 8.
y += 3.
z += 1.

d =
{
x += 19.

step′

=⇒ m′ =

{
x += 27.
y += 3.
z += 1.

d′ = HI
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The seminaive halts on the next iteration with the final chart:

m =

{
x += 27.
y += 3.
z += 1.

Efficiency. In logic programming, values are always boolean; thus, once

a single derivation for a given item is found, we no longer need to consider

expanding. In other words, once an item has a single derivation, its value has

converged—i.e., it has reached its fixpoint. Thus, the seminaive strategy is partic-

ularly efficient in the boolean semiring because it only does work proportional

to the change m, and it does not perform any unnecessary rule application.77

However, when considering general semiring values, we see that seminaive algo-

rithms can be inefficient. In particular, seminaive will combine values for items

before they have converged, and it will repeat the combination each time a taller

derivation of an item is discovered.

Example 16. Below is an example family of acyclic programs with a linear size

in a parameter n. On this family of programs, semi-naive runs in O(n2) time due

to unnecessary repropagation.78

121 x(I+1) += x(I), I < n.
122 x(1) += y(I).
123 y(I+1) += y(I), I < n.
124 y(1) += 1.

We can visualize the direct dependencies among the items as a graph

77This requires that the loop over rules in line 7.12 is modified so that only rules with a non-0
grounding are enumerated.

78We are using a short-hand that allows certain built-in relations, e.g., I+I, to be written in place:
x(I+1) += x(I), I < n translates to x(I’) += x(I), I’ is I+1, I < n.
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x(N) x(N-1) ... x(1) x(0)

y(N) y(N-1) ... y(1) y(0)

At a high level, the reason why seminaive runs in quadratic time is because x(0)’s

value will update O(n) times and, thus, items that depend on x(0) will update

O(n) times as well. After a warm-up period, d will have O(n) values propagated

per iteration. These big changes happen O(n) times before converging, which

gives the quadratic time.

In the next section, we will develop another algorithm that allows us to

compute the value of each item in this program in topologically sorted order—

achieving a much-improved runtime of O(n) on this example.

5.1.3 Prioritized Fixpoint Iteration

In this section, we will give a more flexible strategy for semi-naive evaluation,

which uses an agenda (work list) to safely eliminate height as a synchronization

barrier. The benefit is that we can avoid repropagation: rather than advancing

all items from height ≤h to height ≤h+1 in lockstep, we can allow some items to

advance way beyond the others. Ideally, we would defer propagation until each

item reaches its fixpoint value. Once a set of items converges, we do not need

to continue combining with other converged items (we only need to combine a

set of converged items once). In cyclic graphs, blocking updates until a fixpoint

is reached is impossible (deadlock), but we can focus updates on propagating
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Algorithm 8 agenda: Solve program p by agenda-based fixpoint iteration
1. def agenda(p):
2. m← HI; m′ ← HI
3. d← stepp(m) ▷ Initialize with step from Algorithm 6
4. while d ̸= HI :
5. (y ′⊕= v)← d.pop() ▷ Pick any update from d to apply

May contain delayed constraints

6. m′[y ′]⊕= v
7. if m′[y ′] = m[y ′] : continue ▷ Update has no effect; no need to propagate80,81

8. for (x⊕= y1 ··· yK) ∈ p :
9. for k ∈ [1:K] :

10. d[x]⊕=m′[y[:k)] v[yk=y ′] m[y(k:]]

11. m[y ′]⊕= v ▷ Now, m = m′

12. return m

within a cyclic subgraph before moving on. In other words, we can prioritize

updates within a strongly connected component (Definition 12), allowing it to

reach a fixpoint before advancing to the next strongly connected component.79

The key to allowing this generalization is to generalize d from Algorithm 7

to buffer changes before they are committed to m. This allows some items to

advance their valuations to larger heights while others are deferred. The values

accumulated in d correspond to the sums over heights that have yet to be accu-

mulated into m—it is no longer limited to a single next height. Assuming that

no updates are deferred indefinitely, the agenda strategy’s valuation estimate

should converge to J·K (under the same conditions that seminaive would converge).

The policy for determining which update to pop from the agenda d (line 8.5)

is called the prioritization policy. It is typically implemented using a priority

queue. We provide guidance on prioritization function design later in §5.1.4.

79Goodman (1998) calls SCCs “looping buckets.”
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Pseudocode for our algorithm is provided in Algorithm 8.82 We note that

Algorithm 8 is based closely on the agenda-based algorithm given in Eisner,

Goldlust, et al. (2005). We have made subtle but necessary modifications to their

algorithm to support nonground updates.83 Much like Algorithm 7, the agenda-

based algorithm uses the cursor trick,84 which—at least conceptually—requires

multiple versions of the value of the driver item y ′ that is popped from the

agenda (d): the new version m′[y ′], the change d[y ′], and the old version m[y ′].

We call the queries m′[y[:k)] and m[y(k:]] on line 8.10 passenger queries. If the

y ′ does not match multiple subgoals, then the passenger queries will see the

values with the most up-to-date value that is not pending on the change buffer.

The update y ′⊕= v is only committed to m on line 8.11 after the update has been

carefully pushed through the rules in the program (using the cursor trick to

avoid double counting the update); at this point m = m′. The strategy used by

Eisner, Goldlust, et al. (2005) is essentially the same. However, their strategy

is only correct for ground updates: it does not extend to the case of nonground

80Note that it is safe to allow false negatives on this equality test on line 8.7, but not false
positives. However, false negatives may result in more iterations for d to become empty
(line 8.4).

81The equality test on line 8.7 is between the results of the query specified by y ′ in each of m′ and
m. When y ′ is nonground, this test may no longer run in constant time as we are comparing
the equality of result streams.

82Much like Algorithm 7 is straightforward to verify the invariant that m, d, m′, and d′ are simple
programs.

83The key difference is that we represent the chart and agenda as programs, whereas Eisner,
Goldlust, et al. (2005) require them to each be a hash table mapping ground items to semir-
ing values. This representation difference allows us to represent certain infinite valuation
functions efficiently. A more superficial difference is that we maintain two versions of the
chart m and m′, whereas Eisner, Goldlust, et al. (2005) represent the old value of the driver
(i.e., that in m) using a local variable. A nonground update would cause Eisner, Goldlust, et al.
(2005)’s pseudocode to loop over the infinite Herbrand universe matching the update; their
implementation, on the other hand, would throw an exception in this case.

84A version of the cursor trick appears in Eisner, Goldlust, et al. (2005).
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updates that may contain delayed constraints.85

5.1.4 Prioritization Functions

We use the prioritization policies in each iteration of Algorithm 8 (line 8.5) to

determine which update to propagate next. In principle, any prioritization policy

that does not starve any item from popping results in convergence (in the limit)

to a fixpoint—assuming that fixpoint iteration converges at all. A simple default

policy with this property is first-in, first-out (FIFO); however, FIFO is essentially

just the seminaive algorithm, which we saw in Example 16 can be unnecessarily

slow to converge.

This section describes a particular form of prioritization policy called a priori-

tization function. The way it works is that the prioritization function assigns

each update in d a numeric priority at the time the update is pushed (i.e., when

it is added to d on either line 8.3 or line 8.10).86 When we call d.pop() on line 8.5,

the highest-priority update (with ties broken arbitrarily) is returned, and it is

removed from d. The priority values of each update can be stored in a priority

queue data structure that indexes the updates in d to make these push and pop

operations efficient.

An approach to prioritization proposed by Goodman (1998) first runs the

program in the boolean semiring to estimate the set of items m that have non-0

85Please refer to §A for examples involving nonground updates and delayed constraints.
86It is also possible to assign items non-numeric scores; the only requirement is that the priority

values are partially ordered.
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Algorithm 9 support: Estimate an upper bound on the support set of p.
1. def support(p):
2. p← booleanize(p) ▷ Convert p into a program p in the boolean semiring by

replacing each non-0 constant in p with true.88

3. m← solve(p) ▷ Warning: May not terminate when p has infinitely many
true items (see text).

4. return disjoin(m) ▷ Make sure m’s rules denote disjoint sets.

5. def disjoin(m):
6. ▷ Transform m into a program whose rules denote nonoverlapping sets
7. ▷ This procedure can be sped up by partitioning m into hash buckets where items

in the same bucket might overlap, and those in different buckets cannot.
8. while true :
9. find r, s ∈ m such that r ∩ s and r ̸= s; if no such pair exists, break

10. ▷ Replace the overlapping items with their tightest upper bound (merge).89,90

11. m← (m∖ {r, s}) ∪ {merge(r, s)}
12. return m

value.87 Algorithm 9 provides pseudocode this approach; it has been generalized

beyond Goodman (1998)’s setting to allow nonground items.

Here any solver (solve) can be used to solve p, such as seminaive, or agenda (with

any nonstarving prioritization function). However, for this method to be effective,

we need solve to terminate.91 Fortunately, we only require an upper bound on

the support to move forward. In §6.1, we describe a “relaxed” forward chaining

method that can be used to estimate a upper bound m in finite time.

87In §6.1, we further discuss the use of “booleanization” to estimate the set of non-0 items.
88Here booleanize guarantees that ∀x ∈ H : pJxK ̸= 0 =⇒ pJxK = true.
89 Here merge is the anti-unification algorithm (Reynolds, 1970; Plotkin, 1970). For example, the

pair x = f(3,Y), y = f(X,4) is rounded up to z = f(X,Y).
90Using merge loses precision as it finds an upper bound on the original m that is disjoint.

In principle, we could completely remove the imprecision introduced by merge. By replacing
line 9.11 with m← (m∖{r, s})∪{r ∩ s, r ∖ s, s∖ r}. However, this choice has the computational
challenge of efficiently representing differences of sets of nonground terms (Filardo, 2017,
chapter 4); we use merge in practice.

91In some cases, a booleanization may drastically overestimate the set of items
that forward chaining needs to care about. For example, a program like
goal += p(N). p(z). p(s(N)) += 0.5 * p(N). has infinitely many nonzero items, but the value
of p(sk(z)) is very small as a function of k:

q
p(sk(z))

y
= 0.5k so the values go to 0 quickly.

So, we obtain a good estimate of goal with just a few iterations of fixpoint iteration. However,
booleanization enumerates an infinite number of items since p

q
p(sk(N))

y
= true for all k ∈ N.
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Algorithm 10 incoming and outgoing: Lazily enumerate incoming and outgoing
arcs in program p’s dependency graph given its estimated support m.
▷ Lazily enumerate head-to-subgoal arcs
def incoming(x):

for (y1 ··· yK) ∈ p[x] :
for _ ∈ m[y1 ··· yK ] :

for k ∈ [1:K] :
yield yk

▷ Lazily enumerate subgoal-to-head arcs
def outgoing(y ′):

for (x⊕= y1 ··· yK) ∈ p :
for k ∈ [1:K] :

for _ ∈ m[y[:k) (yk=y ′) y(k:]] :
yield x

From the estimated set of non-0-valued items m, we can find a topologically

ordered list of strongly connected components of the item–item dependency

graph, G=⟨V,E⟩ where V is the set of items in m, and E is the set of edges given

by the head-to-subgoal relationship in the instantiated program. Algorithm 10

describes how to enumerate the incoming (and outgoing) arcs lazily.92,93

The prioritization function is then the mapping from each item to the (in-

teger) position of its SCC in the reverse toposort. Determining the toposorted

SCCs with Algorithm 5 runs in linear time in the instantiated program’s size

O(|V |+ |E|) using linear space in the number of items O(V ).94 This same SCC

analysis will also be used in our hybrid algorithm (§5.4).

92For completeness, we have also included outgoing.
93Note that the pseudocode implicitly relaxes any delayed constraints coming from m because

it ignores them in the “for _ ∈ m[...]” loops. This may overestimate the set of arcs in G, and
consequently, the SCC analysis will be coarse. We also assume that builtins delay rather than
throw instantiation faults (§3.1.2.2).

94Goodman (1998) missed a trick when they first proposed this scheme: the graph edges do
not need to be materialized to run Algorithm 5. Specifically, we can use incoming (or outgoing)
to enumerate the dependents of a node lazily. This procedure only requires constant space
because the queries and unification operations performed therein only require constant space
using our result-stream implementation (§3.1.2.1). Simultaneously with this dissertation,
Eisner (2023) published a detailed overview of algorithms for efficient inference in weighted
deduction systems. Both our approach and theirs leverage the observation above to keep
space complexity linear in |V |. Their “weighted cyclic forward-chaining algorithm” is closely
related to our agenda with SCC-based prioritization. The difference is that our agenda algorithm
coordinates all of its control flow through an agenda; they use a recursive algorithm for
recursive solving of each SCCs (like our hybrid algorithm (§5.4)). Their approach considers
weighted deduction systems that are not limited to semiring weights.
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We note that if the values of only a subset of items targets ⊆ H are required,

then we may wish to use the toposorted SCCs of sccs(incoming, targets), as it will

only enumerate SCCs that targets depend on. Skipping SCCs that are not needed

by the targets nodes can provide large savings in cases where the omitted SCCs

are slow to converge, or the semiring operations are expensive.

To avoid additional factors in the runtime, we can use a bucket queue (Dial,

1969) to implement the pop operation in this case efficiently. With this prioritiza-

tion scheme, we can solve Example 16 using Algorithm 8 in linear time, which is

considerably better than the quadratic runtime of Algorithm 7. Notice that if G

contains cycles, each cycle is “solved” before moving to the next. If convergence

is not guaranteed (e.g., in the real semiring), this can create a barrier to progress

on other program components (i.e., starvation of updates).

Discussion. Below are some alternative techniques for specifying a priori-

tization function:

• User-customizable prioritization functions (Eisner and Filardo, 2011).

• Synthesize a prioritization function using static analysis and satisfiability

modulo theories (Colón and Sipma, 2001; Podelski and Rybalchenko, 2004;

Bagnara et al., 2010).

• Lastly, we mention that there may be benefits to using carefully designed

prioritization within an SCC. In other related settings, prioritization has been

shown to improve convergence rates.95 Future work may want to investigate

95For example, solvers for Markov decision processes (see Wingate and Seppi (2005) for a survey),
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methods based on minimum feedback arc sets, which may be regarded as an

approximate topological ordering when cycles are present (e.g., Baharev et al.

(2016)), and machine learning of prioritization heuristics (e.g., Jiang et al.

(2012) and Vieira, Francis-Landau, et al. (2017)).

5.2 Newton’s Method

Our newton method is an accelerated solver for fixpoint problems, based on

Esparza et al. (2007)’s generalization of Newton’s algorithm for solving fixpoint

equations over a semiring. What is interesting about newton relative to the

fixpoint iterations methods is that it can sum infinitely many derivations in a

single iteration. More specifically, each iteration sums the set of derivations by

increasing dimension (defined below) rather than by its height as in fixpoint

iteration (Proposition 1).96

Etessami and Yannakakis (2009) showed that fixpoint iteration could con-

verge exponentially slower than Newton’s method.

loopy belief propagation (see Elidan et al. (2006) for a representative method), nonlinear
systems of equations (see Baharev et al. (2016) for a survey), and for inference in superior
semirings (e.g., Felzenszwalb and McAllester (2007)).

96In our setting, we use newton to sum over semiring-weighted derivations; thus, our pre-
sentation will differ from that of Esparza et al. (2007)’s which takes Newton’s method
as their starting point. Newton’s method for solving a fixpoint equation x = f(x) over
the reals where x ∈ RD and f : RD → RD is an iterative scheme with the update rule:
x(t+1) ← x(t) + (I − J(t))−1

(
f(x(t))− x(t)

)
where J(t) is the Jacobian matrix of partial deriva-

tives of f evaluated at x(t). Generalizing to the semiring setting requires retrofitting Newton’s
method to accommodate semirings that do not have subtraction, division, or differentiation.
For our purposes, such retrofitting would be a distraction; we refer the reader to any of the
following works, which discuss the connection: Esparza et al. (2007), Reps et al. (2017), and
Luttenberger (2009). We found the presentation in Schlund (2016) the clearest.
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Example 17. Consider the following program based on Etessami and Yan-

nakakis (2009, Theorem 3.2). This program has a single fixpoint JxK = 1.97

125 x += 0.5.
126 x += 0.5 * x * x.

Etessami and Yannakakis (2009) show that fixpoint iteration is exponentially

slower than Newton’s method in this example. Specifically, fixpoint iteration

requires roughly 2k iterations to gain k bits of precision, whereas Newton’s method

gains one bit of precision per iteration.

Definition 29. The dimension dim(δ) of a derivation δ is defined inductively as

(i) Base case: dim(δ)
def
= 0 if δ is a value or builtin

(ii) If δ is of the form x⊕= δ1 ··· δK where no δk is a product

• If K = 0: dim(δ) = 0.

• If K ≥ 1: Let d = max(dim(δ1), ... , dim(δK)). If the argmax is unique (i.e.,

no ties for the max), dim(δ)
def
= d. Otherwise, dim(δ)

def
= d+ 1.

(iii) If δ a product of the form δ1 ··· δK : dim(δ) is not defined for products

because the tie-checking definition is not associative.

Please refer to Figure 5.1 for an illustration.

The dimension of a derivation is always ≤ its height, but it is often≪. The set

of derivations with dimension d can be infinite. In contrast, the set of derivations

with fixed height is finite.98 For example, each derivation in the geometric series

97 1
2x

2−x+ 1
2 = 0 which, by the quadratic formula (a x2+b x+c = 0 ∧ a ̸= 0 ⇐⇒ x = −b±

√
b2−4 a c
2a

with
{
a 7→ 1

2 , b 7→ −1, c 7→
1
2

}
) has solutions {1}.

98The statement about fixed height derivations assumes ignores the possibility that a built-in
relation creates an infinite number of derivations with height =h+1.
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Figure 5.1: Illustration of the dimension of a derivation (Definition 29).

program (Example 10) has dimension ≤ 1. What is remarkable about the set

of derivations with dimension d+1 is that there is an efficient linear structure

relating it to the sets of derivations with dimensions ≤ d, = d, and < d. This

allows us to grow the set of derivations we have summed over much more quickly

using a specialized linear solver (§5.3).

We provide pseudocode for newton in Algorithm 11.99 The high-level picture

of newton is much like seminaive forward chaining: newton tracks its analogs of m

and d, except here m is the set of dimension < d derivations, and d is the set

of dimension =d derivations. To efficiently determine the values for all =d+1

derivations, newton solves a linearized program.

We discuss solving the linear subproblems in §5.3. Unfortunately, not all

subproblems d′ can be solved exactly and efficiently for all semirings; important

99Our pseudocode generalizes Schlund (2016, Definition 3.9), which is for the special case of
context-free grammars, to programs. The generalization is relatively seamless thanks to the
building blocks from §3.1.
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Algorithm 11 newton: Solve program p by Newton’s method
1. def newton(p):
2. ⟨m, d⟩ ← newton_init(p)
3. while true :
4. ⟨m′, d′⟩ ← newton_step(p,m, d)
5. if m′ = m : break
6. ⟨m, d⟩ ← ⟨m′, d′⟩
7. return m

8. def newton_step(p,m, d):
9. m′ ← m⊕ d

10. d′ ← HI Should omit constants and builtins; these are added by line 11.2.

11. for (x⊕= y1 ··· yK) ∈ p :
12. ▷ Base case: combine at least two derivations with dimension =d

13. for 1 ≤ i < j ≤ K :
14. d′[x]⊕=m′[y[:i)] d[yi] m[y(i:j)] d[yj] m[y(j:]]

15. ▷ Recursive case: derive =d+1 derivations by combining one =d+1 derivation
with ≤d derivations

16. for k ∈ [1:K] where yk /∈ V ∪B :
17. d′[x]⊕=m′[y[:k)] yk m′[y(k:]]

18. return ⟨m′, solve_linear(d′)⟩ ▷ Solve using specialized linear solver (§5.3)

19. def newton_init(p):
20. ▷ Initial set of new derivations
21. m← HI; d′ ← HI
22. for (x⊕= y1 ··· yK) ∈ p where at most 1 of y1, ... , yK /∈ V ∪B :
23. d′[x]⊕= y1 ··· yK

24. return ⟨m, solve_linear(d′)⟩ ▷ Solve using specialized linear solver (§5.3)

tractable special cases include commutative semirings and cases where the

subproblems are either left linear or right linear. Other cases are discussed in

the literature (e.g., Esparza et al. (2007), Schlund (2016), and Reps et al. (2017)).

We note that fixpoint iteration methods are always available for (approximately)

solving d′; however, fixpoint iteration may not converge quickly (or at all).

As noted in other work on Newton’s method (e.g., Schlund (2016)), decompos-

ing the program into strongly connected components—as we did for prioritization
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(§5.1.4)—can speed the algorithm up considerably. Our hybrid algorithm (§5.4)

speeds up Newton’s method in this way.

We argue for the correctness of newton in the following proposition.

Proposition 4. On iteration d of Algorithm 11 (line 11.6), the value of m is the

valuation function restricted to dimensions <d, and the value of d is the valuation

function restricted to dimension =d.

Proof (Sketch). We first argue that the value d′ returned by the call to newton_step

on line 11.4 is precisely the sum of dimension =d+1 derivations. Below, we

illustrate how to build dimension =d+1 derivations inductively from the set of

dimension =d derivations, the set of dimension ≤d derivations, and the set of

<d derivations.

These are the unknowns
that we are solving for in d′;
the other subtrees are
constants from the previous
iterations (m, d, m′).

≤d ≤d

≤d ≤d

≤d ≤d

≤d ≤d d <d <d d <d <d

≤d ≤d

≤d ≤d

≤d ≤d

··· ··· ···

······

···

···

···

···

···
···

We argue that our scheme for creating new derivations generates derivations

of dimension =d+1. According to Definition 29, to create a dimension ≥ d+1

derivation, we need to combine at least two =d derivations. That is why the

base case of newton_step (lines 11.13–11.14) combines at least two =d derivations;
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this is depicted as the rule connecting at least two adjacent =d derivations; this

step creates a subderivation with dimension equal to =d+1. Now, because all

subderivations that can combine along the spine (the path up to the root of the

derivations) of the new derivation have dimension ≤d, the new derivation has

dimension =d+1; we see this in the recursive case of newton_step (lines 11.15–

11.17). Thus, the dimension of the new derivation is precisely dimension =d+1.

To ensure that the enumeration of =d+1 is exhaustive, the program d′ includes

every rule that can combine the ≤d subderivations and the base case of at least

two =d subderivations. The program d′ is a compact encoding of the value of

this potentially infinite set of =d+1 derivations. Its solution is found by calling

a specialized solver (described in §5.3) for programs with linear rules.

On line 11.9, we see that m′ is the sum of d and d. On line 11.6, m′ overwrites

m. Thus, at iteration d, m the total value of all derivations with <d. ■

5.3 Specialized Right-Linear Solver

This section gives an algorithm that solves the special family of right-linear

programs, such as those generated by Newton’s method (§5.2).100 Unlike fixpoint

iteration and Newton’s algorithm, this algorithm is exact: it can sum over the

infinite set of right-linear derivations in closed form. Until now, our only exact

algorithms were for acyclic programs (i.e., those defining only finitely many

derivations). We can perform inference efficiently because the solution can be
100We note that all algorithms we derive in this section for the right-linear case work equally

well for the left-linear case with straightforward modifications.
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expressed in terms of finitely many regular operations. A simple example of a

right-linear program is

127 x += 1.
128 x += 0.5 * x.
129 a += 0.5.

Although this program has infinitely many derivations of x, we can solve for the

total value of x using grade school algebra (see earlier discussion Example 10).

Right-linearity can be checked syntactically: each rule has one of two possible

forms (1) a completely constant body side like #127, or (2) the body contains

a single subgoal as its rightmost subgoal like #128 (that subgoal cannot be

a builtin). A program can often be put into a right-linear form using simple

program transformations. The example below is not (immediately) right-linear.

130 x += 1.
131 x += x * a.
132 a += 0.5.

However, if we unfold the a subgoal in #131 and exploit the commutativity of

multiplication (if permitted by the program’s semiring) to reorder the right-hand

side, then we arrive at the right-linear program from before. Unfortunately,

not all semirings are commutative; thus, permuting the right-hand side is not

allowed. The following example, using the semiring of formal languages (§3.3),

is linear but not right-linear.101

133 x += 1.
134 x += a * x * b.

Unlike the previous example, we cannot transform this program into a right-

linear program because its semiring is not commutative. Unfortunately, the
101The solution to this program is x = {anbn | n ∈ N}, which is not a regular language. Thus, it

cannot be expressed as a (finite) expression involving the operations , ⊕, and (·)∗.
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right-linear algorithm cannot solve this program efficiently; we would need a

general linear algorithm.

Algorithm 12 leverages a general-purpose algorithm for solving right-linear

recurrences, i.e., equations of the form x = b ⊕Ax where A ∈ VN×N ,b ∈ VN .

The solution is found by the matrix star operation x = A∗ b, which we defined

in Definition 21. Special cases of this algorithm for specific applications are

well-known, e.g.,

• matrix inversion (Gauss–Jordan Elimination)102

• all-pairs shortest path (Floyd, 1962; Warshall, 1962; Roy, 1959)

• finite-state automaton to regular expressions conversion (Kleene, 1956)

• transitive closure (Warshall, 1962)

These problems were unified into what is often called algebraic path prob-

lems (Lehmann, 1977; Tarjan, 1981). Unifying these problems was just the

(closed) semiring abstraction (§3.3) at work again! A choice of semiring—with

the same underlying algorithm that sums over all paths in a graph—solves all

the above problems and many others.

A useful perspective on the matrix star operation is that it computes the

total weight of paths in a weighted directed graph. Paths may be regarded as

a restricted family of right-recursive derivations (Definition 23).103 Suppose the
102Althoen and McLaughlin (1987) provide an interesting historical overview of the Gauss–

Jordan Elimination algorithm.
103That is the interpretation used in Algorithm 12. Similarly, Algorithm 11 uses this interpreta-

tion to sum over linearly recursive derivations. Notice, however, that Algorithm 11 requires
solutions to be linearly recursive. To use the efficient right-recursive solver, we need the
subgoals to be permutable (e.g., a commutative semiring).

94



Algorithm 12 solve_linear: Solve a right-linear program p by reduction to the
matrix star operation (Definition 21).

1. def solve_linear(p):
2. m← support(p) ▷ Estimate p’s support (Algorithm 9)
3. N ← {x | m[x] = true}
4. A← 0N×N ;b← 0N

5. ▷ The following two loops instantiate p’s rules against the estimated support. In
the loop’s body, we assemble the matrix A and vector b that will be passed to the
right-linear solver.

6. for (x⊕= y1 ··· yK) ∈ p :
7. for _ ∈ m[y1 ··· yK ] :
8. if x⊕= y1 ··· yK is not ground:
9. raise Error("nonground reasoning not supported")

10. else if y1 ··· yK = v where v ∈ V :
11. bx⊕= v
12. else if y1 ··· yK = v y where v ∈ V, y /∈ B104 :
13. Ax,y⊕= v
14. else
15. raise Error("program is not right linear")
16. ▷ Solve the right-linear system with the matrix star operation (Definition 21).
17. s← A∗ b
18. ▷ Convert solution vector s into a program in the obvious way
19. m← HI
20. for x ∈ N : m[x]⊕= sx

21. return m

matrix A is the weighted adjacency matrix of a graph. Then Aik is the total

weight of all paths of length =1. Similarly, the total weight of all paths between i

and k of length =2 is (AA)ik. Thus, the star operation on matrices A∗ def
=
∑∞

i=0 A
i

computes the total weight of paths of length 0, 1, ... and adds them up.

Definition 21 provides a simple recursive method for computing A∗. It runs

in O
(
|N |3

)
time and can be made to run in O

(
|N |2

)
space.105 The runtime

can be improved by decomposition into strongly connected components (Defini-

tion 12).106 Our hybrid algorithm (§5.4) performs this optimization, which is

104We may take v = 1 to match the pattern.
105Sub-cubic algorithms exist when V is a ring, e.g., Strassen (1969).
106The SCC-based algorithms for transitive closure date back to Purdom (1970).
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not in Algorithm 12. Note that there is a speed–accuracy tradeoff when using

the right-linear solver. Often fixpoint iteration can reach a tolerable level of

accuracy faster than the exact algorithm.107 Lastly, we mention that solve_linear

requires the program’s rules to come to ground (see line 12.8).108

5.4 Hybrid Algorithm

This chapter has provided several algorithms that each work best under

different conditions. This section provides a hybrid algorithm that tries to use

the best algorithms available to solve a given program p. We saw that if p is

acyclic, it can be solved efficiently by agenda with toposorted prioritization (§5.1.4).

However, if p is cyclical, it is best to solve p by breaking it up into cyclical sub-

programs p(1), ... , p(M) by strongly connected component (SCC) decomposition.109

This decomposition allows each subprogram to be solved separately, provided

that the solutions to the subprograms it depends on have been computed before-

hand; this can be achieved by solving the subprograms in a topological order.

By analyzing the structure of p(m), we can determine what the best method for

107The convergence rate of fixpoint iteration depends on the properties of the A matrix. In
the case of the real semiring, we can bound the number of iterations to reach a given error
tolerance in terms of the spectral radius of A.

108It is often possible to work around this restriction. For example, the abbreviation transforma-
tion (§6.2) can remove certain nonground rules that cause the assertion to fail. For example,
the program {x(I) += 1. x(I) += 0.5 * x(I).} is linear, but unfortunately not ground be-
cause of the free variable I. Abbreviation transforms it to {x’ += 1. x’ += 0.5 * x’.}, which
can be solved by solve_linear. It also provides a recovery rule x(I) += x’ to rebuild the original
nonground items.

109SCC decomposition is a common optimization for solving cyclical equations (e.g., Goodman
(1998), Nederhof and Satta (2008), Esparza et al. (2007), Schlund et al. (2013), Mohri (2002),
Eisner (2023), Baharev et al. (2016), Chiang, McDonald, et al. (2023), and Purdom (1970)).
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solving it is likely to be. Below is our ranking:

1. solve_linear: Because it is exact. However, it requires a closed semiring (§5.3),

at least one of {right-linearity, left-linearity100, linearity+commutativity},

and that the program can be grounded (see line 12.8).

2. newton: Because it converges more quickly than fixpoint iteration methods.

However, it requires that the induced linear subproblems can be solved

efficiently.

3. agenda: When all else fails, the subprogram can be solved with agenda, as it

runs under the most general conditions.

Algorithm 13 provides pseudocode for our hybrid algorithm, which solves each

subprogram in a topological order where the solutions to earlier subprograms

are taken as inputs to later subprograms. It makes use of a subroutine best_solve

that uses the ranking of solvers above to select the best strategy for solving the

given subprogram.110

Discussion.

• The discussion related to the termination of support applies here (§5.1.4).

• When solving an SCC with either newton or a fixpoint algorithm, it may be

necessary to use a numerical convergence threshold (or iteration limit), as
110A simple implementation of best_solve would use exception handling to move down the list of

preferred solvers. This can be sped up when the necessary properties can be checked ahead of
any expensive computations. For example, linearity can be checked without instantiating the
program’s rules in Algorithm 12.
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Algorithm 13 solve: Solve program p using the hybrid algorithm.
1. def solve(p):
2. m← support(p) ▷ Estimate p’s support (Algorithm 9)
3. m← HI
4. for σ ∈ sccs(incoming,m) : ▷ Topologically ordered list of SCCs (Algorithm 5)
5. ▷ Restrict p to compute the items in the current component, σ.
6. p′ ← HI
7. for x ∈ σ :
8. for (y1 ··· yK) ∈ p[x] : ▷ Add the specialized rules to the subprogram;

Note: p’s rules may participate in multiple SCCs.
9. p′[x]⊕= y1 ··· yK

10. ▷ Solve the subprogram p′ with the best applicable method, taking the solutions to
earlier subprograms as input through m.111

11. m← best_solve(p′ ⊕m)

12. return m

discussed earlier in this chapter. Otherwise, the Algorithm 13 could run

forever on a single subprogram with making progress on the others.

• Looking forward to other chapters, we note that it is often best to optimize the

program before executing. We note, in particular, the program specialization

techniques of (§6.2) and the program optimizer (§8). These methods produce a

semantically equivalent program that is more efficient to execute.

Summary

In this chapter, we described many algorithms for solving Dyna programs. We

gave three implementations of fixpoint iteration. We extended Eisner, Goldlust,

et al. (2005)’s forward chaining algorithm to allow nonground updates and

delayed constraints. We adapted Esparza et al. (2007)’s semiring-weighted

Newton algorithm to Dyna programs, which provides a powerful new solver to
111The ⊕-addition below should be implemented carefully to avoid the cost of copying.
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the Dyna toolbox. We also gave a specialized solver for programs with a certain

linear structure. Lastly, we gave a unified, hybrid algorithm that breaks up a

large program into smaller subprograms that can be solved separately with the

best applicable method.
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Chapter 6

Program Analysis

This chapter is about static program analysis: proving that the program

satisfies certain properties without actually running it on all possible input data

sets. Analyzing program behavior without actually running the program on

concrete data is known in the programming languages community as abstract in-

terpretation (Cousot and Cousot, 1977); it can be viewed as the partial evaluation

of a program to acquire constraints on its possible semantics.

• Abstract analyses are useful for code generation because code generation can

take advantage of any guarantee that an item will have a particular type or

property.112 In §6.2, we leverage the output of abstract analysis to generate

specializations of the program (i.e., Dyna-to-Dyna code generation) that can

compute a subset of the items more efficiently by removing unnecessary

intermediate items.
112In the context to code generation into an object-oriented host language, these guarantees can

be used to represent the item efficiently as an instance of a class specialized to objects of that
type and to speed up tests (e.g., pattern-matching).
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• Abstract analyses are useful for complexity analysis: If the program stores and

iterates over a collection of distinct objects of a particular type, then knowing

the type’s cardinality on the concrete data can yield bounds on the program’s

space and runtime requirements (§6.3); our program optimizer (§8) uses such

bounds as cost function.

Below is a listing of this chapter’s contents.

6.1 Type Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.2 Abstract Forward Chaining . . . . . . . . . . . . . . . . . . 106

6.2 Type-based Program Specialization . . . . . . . . . . . . . . . . . . 120

6.2.1 Inferring a Type for Useful Items . . . . . . . . . . . . . . . 122

6.2.2 Specialization Transformation . . . . . . . . . . . . . . . . 123

6.2.3 Abbreviation Transformation . . . . . . . . . . . . . . . . . 125

6.3 Automatic Space and Time Analysis . . . . . . . . . . . . . . . . . 129
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6.3.2 Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 133
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6.1 Type Analysis

6.1.1 Formulation

This section describes a system that infers the set of items that may have a

non-0 value in a program p for all input data D that satisfy user-provided input

constraints D. We call the set of non-0-valued items the support of the program.

Let nz(D) and nz(p(D)) denote the support of their respective arguments. Since

we do not know the concrete data D to execute p(D),113 we compute an upper

bound m on its support through abstract interpretation such that114

nz(D) ⊆ D︸ ︷︷ ︸
input satisfies constraints

=⇒ nz(p(D)) ⊆ m︸ ︷︷ ︸
valid upper bound on support

In other words, D characterizes the subset of H for which the input items D is

non-0, and m characterizes the subset of H for which the derived items p(D) is

non-0. Therefore, we call D the input type and m the derived type.

We now describe our type specification language and how it is used to rea-

son about possible items. Continuing with the CKY example (Example 6), we

provide the specification of the input data. However, as we are interested in the

possibility that an item may have a non-0 value, rather than finding its specific

value, we first transform the program as illustrated below.

Example 18. Recall, the program to analyze is

113Recall that p(D) is shorthand for p′J·K and p′ = p⊕D.
114For naturally ordered semirings (Definition 26), it should be possible to refine our technique

to produce an upper bound on the value of each derived item as a function of upper bounds on
the values of its input items.
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135 params: word; len; γ.
136 β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).
137 β(X,I,K) += γ(X,Y) * β(Y,I,K).
138 β(X,I,K) += γ(X,W) * word(W,I,K).
139 goal += β(s,0,N) * len(N).

Because no rules have been specified to define the word, len, and γ items, one

might think that these items have value 0.115 However, the params declaration

says that the program’s input will define these items.

The CKY program p above can be automatically “booleanized” to yield the

type program p below.116 The : - and , symbols traditionally denote the ⊕= and

operations in the Boolean semiring.

140 params: word; len; γ.
141 β(X,I,K) :- γ(X,Y,Z), β(Y,I,J), β(Z,J,K).
142 β(X,I,K) :- γ(X,Y), β(Y,I,K).

143 β(X,I,K) :- γ(X,W), word(W,I,K).

144 goal :- β(s,0,N), len(N).

The intention is that β(X,I,K) will have value true in the type program for all

X,I,K such that β(X,I,K) has a non-0 value in the CKY program. Of course, each

program needs input: if p is run on data D, then p must be run on a booleanized

version D. The valuation p(D) now effectively specifies an inferred type of items

that might be derived by the program.117

To abstract away from the specific input data D, users may directly specify

the booleanized input data D (mentioned above). This D may be any upper

bound on its support. D serves as a type declaration for the unknown input D.

115In other words, a program that is expecting inputs is only partially specified. When input
items are queried, they are returned as delayed constraints (rather than incorrectly assigning
them a value of 0).

116The translation additionally maps any constant values to false or true.
117For example, p(D)

q
β(np,3,5)

y
= true if p(D)Jβ(np,3,5)K ̸= 0—and possibly even if

p(D)Jβ(np,3,5)K = 0, for example, if 0 can result from adding non-0 values under ⊕. Such
overestimates can arise because the boolean program does not track actual values.
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The type defined by p(D) then continues to include all items in nz(p(D)), for any

and every dataset D for which this upper bound holds. For example, p(D) still

gives value true to β(np,3,5) if β(np,3,5) could possibly have a non-0 value.

An example of an input type declaration for CKY is the following boolean

program D:

145 params: k; w; n.

146 word(W:w,I:n,K:n) :- I < K.

147 len(N:n).
148 γ(X:k,Y:k,Z:k).
149 γ(X:k,Y:k).
150 γ(X:k,W:w).

The lines #146–150 specify 5 sets whose union is a type that contains all in-

put items. We use the notation word(W:w,I:n,K:n) :- I < K in #146 as a short-

hand for word(W,I,K) :- w(W), n(I), n(K), I < K. This type indicates that items in

the set {word(W,I,K) | w(W), n(I), n(K), I < K} may have non-0 values in the input

data D.118,119 The predicates such as n could be defined by additional lines like

n(I) :- 0 ≤ I ≤ 20, which defines the possible sentence positions for sentences

of length 20. However, to abstract away from any particular sentence length,

we omit such a definition, leaving n as a parameter (#145). Thus, the above

program D actually defines a parametric type, just as List[α] in many program-

ming languages is a parametric type that depends on a concrete choice such as

118Note that this input type is compatible with lattice parsing (e.g., Tomita (1986) and Hall
(2005)); in that setting, the nodes of the lattice (i.e., weighted acyclic finite-state automaton)
would be labeled by their position in a topological ordering of the input, and word(W,I,K)

encodes the weight of the arc I
W−→ K.

119A natural alternative to #146 is word(W:w,I:n,K:n) :- (K is I + 1), which uses the built-
in addition constraint. This type denotes the set {word(W,I,I+1) | w(W), n(I), n(I+1)} and it
directly encodes the description of the CKY input data that we gave in Example 6. Although
this input characterization may be more precise for some applications, the conclusions that we
can derive from it appear to be the same (i.e., we are unable to infer a tighter derived type).
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α = string. It depends on three other relations, which specify the allowed termi-

nals, nonterminals, and sentence positions. The concrete input type would have

the form D(k, w, n). Our program analyzer reasons about these user parameters

symbolically; thus, it performs symbolic evaluation (e.g., Baldoni et al. (2018)).

Our abstract forward chaining algorithm (§6.1.2) will derive the following

rules that specify a valid type for the derived items of p(D(k, w, n)):

151 β(X:k,I:n,K:n) :- I < K.

152 goal.

Adding these rules and D yields the desired description of a type that covers

all non-0 items. Call the resulting program m. The program m uses the same

parameters as D and provides an upper bound on p(D(k, w, n)). The bound implies

that we will only build β items where X is a nonterminal (has type k), and the

I and K variables are sentence positions (have type n) with I < K. Additionally,

the bound says (reassuringly) that it may be possible to build a goal item. If goal

were impossible, we would have detected a mistake in the code. Similarly, if the

bound had included β(X:k,I:k,K:n), it would be a suspiciously loose upper bound,

since I should never be a nonterminal.

Notice that p′ = p⊕D would also be a valid type for p(D(k, w, n)). However, p′

is not easily consumed by downstream applications.120 Our analyzer (§6.1.2) is

guaranteed to output a derived type, which is a program (like m above) where

each rule is simple. We define a rule to be simple if its body contains only

constants, user parameters, and built-in constraints. Simple rules may be

regarded as the symbolic generalization of axioms (§2).
120E.g., space and time complexity analysis (§6.3) and program specialization (§6.2).
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In summary, our type analyzer is given the program p together with a para-

metric input type D, and computes a parametric derived type such as #151–152

for the items derived by p. In effect, it runs the booleanized program p on the

input upper bound D. However, as the derived type is only required to be an

upper bound, we will permit the analyzer to “round up” as it goes, as needed to

keep the type simple.121

6.1.2 Abstract Forward Chaining

We now develop our type inference algorithm, which is based on fixpoint

iteration (§4.3) in the boolean semiring.122 Here, we generalize fixpoint iteration’s

valuation estimate ν to an abstract valuation where the user’s type parameters

(such as n) are used to define ν symbolically, as we saw in the derived type

inferred for the CKY example. This generalization is necessary because we no

longer have a concrete upper bound on the input data with which to initialize

forward chaining: the n, k, and w parameters are unknown relations. Instead, we

specify parametric rules that upper-bound the unknown input data. Forward

chaining derives new simple rules, which may also refer to the relations like n and

< . Indeed, these relations may emerge in the derived type m, as we saw in #151.

We provide the abstract forward chaining algorithm in §6.1.2.1. We address

the challenges arising from constraint accumulation in §§6.1.2.2–6.1.2.5.

121The abstract interpretation literature often calls rounding up widening.
122Recall that fixpoint iteration is also the basis for ordinary forward chaining (Ullman, 1988;

Eisner, Goldlust, et al., 2005) and many of the algorithms that we developed in §5.
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6.1.2.1 Type Inference Algorithm

To generalize forward chaining in the boolean semiring, we will represent the

valuation ν from §4 as a program m—just like we did in §5. We will reason in the

boolean semiring. This representation is helpful because we can use programs

to represent unknown and infinite sets. We require each rule in m to have a

specific syntactic form: each must be a simple type. A simple type is a rule of

the form x : -c1, ... ,cM where each cm is externally defined as either a built-in

constraint or a parametric constraint and may contain variables. Note that x

cannot appear in the body of any other simple type. We saw the derived type for

the CKY example #146–152 is the collection of simple types.

In some sense, program rules #141–150 already describe the derived type,

but they do so indirectly and not as a collection of simple types. This form

ensures that each simple type is self-contained and can be implemented as a

(nonrecursive) object-oriented class.

Type inference is performed by fixpoint iteration on a symbolic step operation.

This should be viewed as a “lifted” version of the forward chaining algorithm

from §5: it derives simple types from other simple types rather than deriving

ground items from other ground items. The constraints that appear in these

simple types are passed around during execution. Such constraints are known in

the constraint logic programming literature as “delayed constraints,” in contrast

to constraints like 2 < 3 or 3 < 2 that can be immediately evaluated and replaced

with true or false (respectively).
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Algorithm 14 abstract_fc: Abstract forward chaining algorithm for type program
p. This procedure assumes that the input type has been included in p.

1. def abstract_fc(p):
2. ▷ This algorithm a straightforward modification of fixpoint iteration (Algorithm 6)

to find the fixpoint of the relaxed step operation relax(propagate(stepp(·))).
3. m← HI124

4. while true :
5. m′ ← relax(propagate(stepp(m))) ▷ Apply the relaxed step operation
6. if m′ = m : return m
7. m← m′

defined in Algorithm 6123

However, the challenge that arises from the repeated application of step is that

constraints may accumulate.123 They can accumulate indefinitely in the case of

recursive rules since they effectively unroll an unbounded chain of recursive calls,

as will be illustrated in §6.1.2.2. To prevent divergence, we propose the following

strategies: constraint relaxation (relax; §6.1.2.2), and constraint propagation

(propagate; §6.1.2.3). We discuss termination in §6.1.2.5. We give pseudocode for

the overall approach in Algorithm 14.

6.1.2.2 Relaxation

Consider the following input type D for Example 4.

153 params: n.
154 stop(S) :- n(S).

155 edge(S,S’) :- n(S), n(S’).

Applying the step operation once, which renames variables to avoid conflicts, we

123Note that when user parameters are queried in p, they are returned as delayed constraints by
Algorithm 2. For example, let p be the booleanized CKY program together with its input type.
Then, if we perform the lookup p[n(K)], we would get the result stream containing n(K) as its
only element.

124We represent the m as a set of rules. In our implementation, this set replaces rules with their
most general version, i.e., if there exists a pair of simple types r, r′ such that r′ ⊆ r, we remove
r′ and keep r. This ensures, among other things, that rules that are equivalent under variable
renaming do not both appear in the set. It can also help to achieve convergence. See §6.1.2.4
for further discussion.
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derive the following simple type for β items (other types not shown):

156 β(S1) :- n(S1).

Applying step a second time, we derive

157 β(S1) :- n(S1).
158 β(S1) :- n(S1), n(S2).

Notice in the second rule that n(S2) is lingering as a constraint from the recursive

call. In keeping with the (Prolog-like) semantics of boolean programs, the

variable S2 is existentially quantified since it is a “local” variable that appears

only in the body of the (: -) rule. After applying step k times, we derive

159 β(S1) :- n(S1).
160 β(S1) :- n(S1), n(S2).

161
...

162 β(S1) :- n(S1), n(S2), n(S3), ..., n(Sk).

This procedure is diverging by elaborating the type to describe paths of every

length, rather than converging to a fixpoint (i.e., a type that describes all nodes

that can reach a terminal state on paths of any length). Our strategy for

eliminating constraint accumulation from previous levels of recursion is to drop

(i.e., relax) any constraint that refers to local variables:

Definition 30 (relax). Let x : -c1, ... ,cM be a simple type. The operation relax drops

each delayed constraint cm that refers to a variable that does not appear in x.

In other words, we obtain a new simple type with the same head, but with the

following subset of constraints {cm | vars(cm) ⊆ vars(x),m ∈ [1:M ]}. To relax a set of

simple types, we simply map relax over the set.

Applying relax to the second application of step to #157–158, we see that it

would drop the second constraint of the second simple type because it depends
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on the non-head variable S2, yielding:

163 β(S1) :- n(S1).
164 β(S1) :- n(S1).

We may merge these rules because they are duplicates. We now have the

following type

165 β(S1) :- n(S1).

We now have a fixpoint: this iteration’s type (after relaxation) is equal to the

previous iteration’s type (#156). Notice that some precision is lost because β(S)

is true even for nodes S for which there does not exist a path ending in stop.

Why is relax valid? In general, dropping constraints from a simple type simply

makes the type larger, raising the upper bound. Dropping constraints that

depend on non-head variables is simply a convenient choice.

We now consider an example where relax leads to an overly loose type. Recall

CKY (Example 18). The simple types from D (#145–150) are added to m on the

first step, such as

166 γ(X,W) :- k(X), w(W).

167 word(W,I,K) :- w(W), n(I), n(K), I < K.

On the next step, #143 from p

168 β(X,I,K) :- γ(X,W), word(W,I,K).

gives us an initial type for β:

169 β(X,I,K) :- k(X), w(W), n(I), n(K), I < K.

After relax, we have

170 β(X,I,K) :- k(X), n(I), n(K), I < K.

However, on the next step, #141 from p

171 β(X,I,K) :- γ(X,Y,Z), β(Y,I,J), β(Z,J,K).
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will expand m to the following type:

172 β(X,I,K) :- k(X), k(Y), k(Z), n(I), n(J), n(K), I < J, J < K.

relax will drop all the constraints on local variables:

173 β(X,I,K) :- k(X), n(I), n(K).

Unfortunately, relaxation resulted in the ordering information (<) being lost.

In the next section, we will see how to combine I < J and J < K (before relaxing

them) to deduce that I < K. Since I < K only constrains head variables, it will

survive the relaxation step—allowing the analyzer to deduce that β(X,I,K) items

all have property I < K (rather than the first generation having I < K, the second

having (∃J) I < J, J < K, the third having (∃J1, J2, J3) I < J1, J1 < J2, J2 < J3, J3 < K,

and so on.).

6.1.2.3 Constraint Propagation

Constraint propagation rules (Frühwirth, 1998), are commonly used in

constraint logic programming, such as ECLiPSe (Apt and Wallace, 2007), com-

puter algebra systems, such as Mathematica (Wolfram, 2003), and theorem

provers, such as Z3 (Moura and Bjørner, 2008). In our setting, they provide a

mechanism for users to supply domain-specific knowledge about type parame-

ters and built-in constraints. They are used to derive new constraints during

inference, which may serve to counteract excessive relaxation (§6.1.2.2).

Recall the loose type inferred in the CKY example (#172; repeated below):

174 β(X,I,K) :- k(X), k(Y), k(Z), n(I), n(J), n(K), I < J, J < K.

We saw that relax causes the ordering relationship I < K to be lost in #173. Con-
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straint propagation rules combat this loss by inferring the additional constraints,

such as I < K by the transitive property of <:125

175 β(X,I,K) :- k(X), k(Y), k(Z), n(I), n(J), n(K), I < J, J < K, I < K.

After applying relax, we arrive at our desired type

176 β(X,I,K) :- k(X), n(I), n(K), I < K.

Below, we give motivating examples of constraint propagation rules and

how they are useful for our running examples. Constraint propagation rules

are specified using the <== syntax seen in the examples below.126 They may be

specified along with the input type.

• In CKY (Example 6), the (constant) grammar start symbol s is an element

of the parametric nonterminal type k, and 0 is an element of the parametric

sentence position type n:

177 k(s) <== true.
178 n(0) <== true.

• To assert that the k and n types are disjoint:

179 fail <== k(X), n(X).

Here fail is a special constraint that is never satisfied (a contradiction). If

k(X) and n(X) ever both appear in the body of a simple type, the simple type

is empty and can be deleted. Notice that #177–179 are sufficient to derive a

contradiction from either n(s) or k(0) (i.e., both are false).

• To assert that a type d is a subset of a type c:

180 c(X) <== d(X).

125The specific syntax for specifying the transitive property is on #181.
126We use <== to distinguish propagation rules from program rules and input types.

112



• To assert that < is a strict partial order:

181 (I < K) <== (I < J), (J < K).
182 fail <== (I < I).

• To reason about a recursive type, such as a list127 of nonterminals (i.e., type k):

183 ks([]) <== true.
184 k(X) <== ks([X|Xs]).
185 ks(Xs) <== ks([X|Xs]).

Propagation rules for builtins (like those for < above) are provided in a

standard library, whereas the user must provide rules for user parameters. If

the user does not provide certain rules, our system will still produce a valid upper

bound, but it may be looser than necessary. Thus, writing propagation rules may

be an interactive experience. However, if the user provides unsound propagation

rules, it will likely lead our system to produce an incorrect upper bound.

The propagate method used in abstract forward chaining (abstract_fc) runs a

standard constraint propagation algorithm (Frühwirth, 1998)—which is just

another forward chaining algorithm—to deduce all transitive consequences of

the constraints in the body of a simple type.

Checking constraints. In the propagation step, we check if each of its

built-in constraints is satisfied or unsatisfiable. Any satisfied constraint can

be safely dropped from its simple type, and it does not loosen the type. If an

unsatisfiable constraint exists in a given simple type, then that simple type can

be safely dropped from m.

127The bracket-pipe notation is a shorthand (borrowed from Prolog (Colmerauer and Roussel,
1996)) for working with lists. A list such as [1,2,3] desugars to cons(1,cons(2,cons(3,nil))).
The notation [X,Y|Rest] would match as X=1,Y=2,Rest=[3].
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6.1.2.4 Removing Redundant Simple Types

In Algorithm 14, we may remove a simple type s from m if there exists a

supertype t ∈ m that is s ⊆ t (see also footnote 124). Below is a method for

testing such subtype relationships that leverages propagate. We also include a

method for merging simple that we use later in the chapter.

Algorithm 15 Subtype, intersection, and merge algorithms for simple types.
1. ▷Returns true if s ⊆ t; may have false negatives.
2. def subtype(s, t):
3. ▷ (s ⊆ t)⇐⇒ (s ∩ t) = s

4. r ← intersect(s, t)
5. R← propagate(r)
6. S ← propagate(s)
7. return R = S ▷ equal up to variable renaming

8. ▷Return a simple type representing the intersection of s and t.
9. def intersect(s, t):

10. θ ← unify(head(s), head(t))
11. s′ ← θ(s)
12. t′ ← θ(t)
13. return (head(s′) : - body(s′), body(t′))

14. ▷Given simple types r and s, return a simple type t such that r ⊆ t and s ⊆ t. Note that t may
be a loose bound on r and s.

15. def merge(r, s):
16. (r : -R)← r
17. (s : -S)← s
18. X← fresh() ▷ New variable; used to represent the common head shape
19. R′ ← propagate(R (X=r))
20. S ′ ← propagate(S (X=s))
21. T ← R′ ∩ S ′ ▷ Only keep common constraints
22. return (X : - T )

Note that this test may fail to detect the subset relation if the rules for

propagate are incomplete. Future systems might use more powerful theorem

provers, such as Z3 (Moura and Bjørner, 2008), to test the subset relation.
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6.1.2.5 Termination

This section describes a technique for preventing abstract forward chaining

from running forever. It ensures finite-time termination with a valid upper

bound but may come at the expense of precision. We require a valid upper bound

to proceed with downstream analyses, such as the space and time complexity

analyzer (§6.3), the program specialization system (§6.2), and the program

optimizer (§8).128

The challenge in ensuring termination is that abstract forward chaining must

provide a valid upper bound, so we cannot simply run it for a finite number of

iterations and return the chart because it may underestimate the type. Our

approach will be to round up the type (as we did in relax). As an extreme, observe

that we can round m all the way up to the unconstrained type X : - true, as it is

always a valid upper bound. Unfortunately, this type is completely informative

because it is loose for all subtypes; having better bounds for at least some of the

subtypes and looser types for the others would be preferable.

Our termination strategy involves truncation according to three user-

controllable parameters ⟨Ddepth, Dbuiltin, Dpropagation⟩ that work as follows:

• terms: We can build infinitely many simple types corresponding to ever-larger

terms. To avoid this, we truncate them to an (optional) user-specified depth

limit Ddepth. This depth limit will rewrite a simple type in the following way:

any subterm that appears in the head at depth D is replaced with a fresh,

128They may also be used to ensure that Algorithm 9, which performs support estimation on
concrete data, returns a valid upper bound.
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unconstrained variable.129

• builtins: The challenge of built-in constraints is that they may introduce

an unbounded number of new symbols that can be used in simple types. To

prevent this, we keep track of the number of distinct symbols that have been

introduced by the builtin relations (across all iterations); once more than

Dbuiltin have been introduced, we prevent any of the built-in constraints from

evaluating when they attempt to introduce a new symbol.

• propagation: We also must ensure that constraint-propagation rules are not

infinitely productive (i.e., they cannot produce an unbounded number of new

constraints). To do so, we limit the maximum number of distinct constraints

that the constraint propagation rules can produce in a given call to propagate.

Once more than Dpropagation constraints have been deduced (in a given simple

type), the iterative constraint-propagation procedure stops with whatever it

has concluded so for.

These termination heuristics (along with relax) are sufficient to ensure that

Algorithm 14 terminates with a valid upper bound.130 However, when the

heuristic is enacted, the resulting analysis will be loose when the heuristic is

enacted. Thus, a warning message is provided to the user. If better results

are required, the programmer can interact with the system (like an interactive

129We apply the depth limit modulo structural equality constraints, so that f([1,2,3,4,5]) and
f([1,2|Xs]) :- Xs=[3,4,5] are handled the same, as the latter is transformed into the former.

130Given finite values for the parameters, only finitely many simple types can be generated.
Since the relaxed step operation is monotone nondecreasing, the abstract forward chaining
cannot continue to increase m forever.
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theorem prover) to improve the analysis by refining the input type or providing

missing propagation rules.

In general, the truncation parameter limits should be set conservatively (to

large values); however, there is an efficiency benefit to selecting small values as

the type found can be exponentially large in Ddepth (see Example 19). We cannot

simply set the value of Ddepth to be small in all cases. For example, if Ddepth =

4, then the simple type f1(f2(f3(f4(f5(X))))) :- n(X) would be approximated by

f1(f2(f3(f4(Trunc)))) :- true which is a much looser type. If the Ddepth had been

≥ 5, the analysis would not have lost any precision.

Example 19. Abstract forward chaining produces an exponentially large type

(in the Ddepth parameter) for the program below.

186 bitstring([]).
187 bitstring([X|Xs]) += bit(X) * bitstring(Xs)
188 bit(0). bit(1).

because it will enumerate exponentially many lists (in Ddepth) before truncation

kicks in.131 The example below has Ddepth=5:

bit(0). bit(1). bitstring([0,0,0]). bitstring([0,0,0,Trunc1|Trunc2]).

bitstring([]). bitstring([0,0,1]). bitstring([0,0,1,Trunc1|Trunc2]).

bitstring([1]). bitstring([0,1,0]). bitstring([0,1,0,Trunc1|Trunc2]).

bitstring([0]). bitstring([0,1,1]). bitstring([0,1,1,Trunc1|Trunc2]).

bitstring([0,0]). bitstring([1,0,0]). bitstring([1,0,0,Trunc1|Trunc2]).

bitstring([0,1]). bitstring([1,0,1]). bitstring([1,0,1,Trunc1|Trunc2]).

bitstring([1,0]). bitstring([1,1,0]). bitstring([1,1,0,Trunc1|Trunc2]).

bitstring([1,1]). bitstring([1,1,1]). bitstring([1,1,1,Trunc1|Trunc2]).

In the case of bitstring example, no finite value Ddepth that will cover the type

without rounding up. While it is true that making Ddepth larger produces a tighter

analysis, it is unlikely to improve any downstream analyses. For example, the

131Note that this example does not require any input data.
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space complexity analysis that we will see in §6.3.1 will still (correctly) predict

that the amount of space required by fixpoint iteration is∞ regardless of whether

Ddepth is 5 for 5 billion.132

We can obtain a more precise analysis that constrains the list argument to be

well-formed. We use the following:

197 % Declare user parameters
198 params: b; bs.
199 % type suggestion for bitstring

200 bitstring(Xs) :- bs(Xs).
201 % propagation rules
202 b(0) <== true.
203 b(1) <== true.
204 bs([]) <== true.
205 b(X) <== bs([X|Xs]).
206 bs(Xs) <== bs([X|Xs]).

Notice that #200 initializes the type for bitstring(Xs). From there, abstract forward

chaining proves that it is a valid upper bound. The output is

207 bit(0).
208 bit(1).

209 bitstring(Xs) :- bs(Xs).

It is no surprise that our symbolic evaluation method (abstract forward

chaining) requires these kinds of termination strategies, as symbolic evaluation

techniques, more broadly, are plagued by path explosion, and they employ trun-

cation techniques (like ours) to make their methods practical (Baldoni et al.,

2018, §5). State merging (Baldoni et al., 2018, §5) is another practical technique

where two or more analyzer states are merged, i.e., replacing a single state

representing their union, possibly a lossy union. Future work may wish to

explore state-merging methods as a way to mitigate the aggressive truncation
132In our experience as users of the type analyzer, we have seen that there are advantages to

re-running the type analyzer with smaller values of the truncation parameters since they
result in a smaller output that illustrates the same divergence issue.
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that we do here.133

In summary, we have described a truncation technique for ensuring that

abstract forward chaining produces a valid upper bound in finite time. The

bound is sound but may be quite loose. The hope is that a loose bound is more

useful than a “type analysis did not converge” error. Users can inspect the

system’s output and provide additional constraint-propagation rules to avoid

truncation. Thus, the type analysis system can be used as a theorem-proving

assistant.134 Lastly, truncation allows downstream analyses to proceed, albeit

with the loose type.

133We gave a simple-type merging method in Algorithm 15 that may be useful for this purpose.
134It would be interesting to explore the use of dynamic analysis as a means to inform static

analysis. For example, a future system could synthesize plausible invariants that happen to
be true of the program items when running on concrete data. From there, the system could
recommend some assertions to the user that would tighten the static program analysis of the
program.

119



6.2 Type-based Program Specialization

This section describes a system that specializes a given program to a specific

input–output API. The system exploits the type analyzer of §6.1 to perform a

program transformation (i.e., Dyna-to-Dyna code generation) that produces the

specialized program. Consider the following example.

210 goal += a(I,I).
211 a(I,K) += b(I,J) * c(J,K).
212 goal += dead(X).

with the input type134

213 b(_,_).
214 c(_,_).

and output type134

215 ĉ(_,_).

We can see that dead(X) is not defined; thus, the bottom rule (#212) provably

never fires given the declared input type. Now, suppose we work backward

from the outputs (i.e., goal in the example). In that case, we see that we only

require a subset of a(I,K)—specifically, just its diagonal a(I,I). We call a(I,I)

useful, whereas the off-diagonal elements are useless.135 Useful items should

also be non-0. Usefulness analysis is a form of sensitivity analysis: an item is

useful if it is non-0 and setting its value to 0 would change the value of any

output item, and useless otherwise. Computing the precise set of useful items

requires concrete input data, so much like §6.1, we will estimate a (symbolic)

134Recall that the underscore (_) creates a fresh, unnamed variable.
134Here the marking ·̂ is like the · marking from §6.1, except for useful types (see below).
135In the parlance of finite-state machines and context-free grammars, a useful item is both

accessible and co-accessible.
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upper bound on the set of useful items for a specific input–output type.

Below, we exploit our knowledge of the useful items to manually specialize

each rule of the example program so it computes goal more efficiently:

216 goal += a(I,I).
217 a(I,I) += b(I,J) * c(J,I). % only builds a’s diagonal

Notice that this program is not fully equivalent to the previous one because

the off-diagonal a(I,K) items are now 0-valued.136 However, the declared input–

output API is preserved: the output values (namely, goal) are guaranteed to be

equal to those of the original program.

We can improve this program further by abbreviating the a(I,I) items to a’(I)

because they always carry a redundant variable:

218 goal += a’(I).
219 a’(I) += b(I,J) * c(J,I).

We can optionally include rules, such as a(I,I) += a’(I), that recover the original

items from their abbreviated versions (assuming they are useful). Later, we will

show examples of abbreviations that flatten nested terms, remove redundant

variables, and drop variables that are never instantiated.

This section will develop an automated system for performing specialization

transformations like these.

• First (§6.2.1), we describe extension to our type analysis method (§6.1) to

estimate the set of useful items.

• Next (§6.2.2), we give a specialization method that transforms each rule—
136In some parts of the thesis, this kind of semantics-altering transformation would require us to

rename the specialized version a as it has a different meaning. To keep the exposition simple,
we will allow it.
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Algorithm 16 useful: For a given program p, input type D, and output type D̂,
define a new set of items ·̂ where x̂ is true if x might be useful.

1. ▷ Note: The function ·̂ wraps a term in a novel function symbol.
2. def useful(p,D, D̂):
3. p̂← HI ▷ New program
4. p̂⊕= p⊕D ▷ Defines the set of the possible items · ; same as §6.1
5. p̂⊕= D̂ ▷ Base case: output types are useful
6. for (x⊕= y1 ··· yK) ∈ p :
7. for k ∈ [1:K] :137

8. p̂[ŷk] : - x̂, y1, ... , yK ▷ The subgoal yk is useful if it appears in an
active rule with a useful head9. return p̂

by expanding it into multiple versions per possible type—with the aim of

reducing the total number of useless items and useless rule firings.

• Lastly (§6.2.3), we refine the specialization method to perform abbreviation,

as in the example above.

6.2.1 Inferring a Type for Useful Items

To reason about the set of useful items for a specific API (i.e., a pair of an

input type program D and an output type program D̂, we transform the program

p using Algorithm 16. The output will be a new program p̂ that defines new

items marked with ·̂ such that x̂ is true if x might be useful. Please review the

annotated pseudocode below for a further explanation.

Performing type analysis on p̂ = useful(p,D, D̂) using abstract forward chain-

ing (§6.1) will infer a type for X̂. Below is p̂

137It is safe to skip k when yk is a constant or builtin.
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220 % base case: output types are useful

221 ĝoal.
222 % goal += a(I,I).

223 â(I,I) :- ĝoal, a(I,I).
224 % goal += dead(X).

225 d̂ead(X) :- ĝoal, dead(X).
226 % a(I,K) += b(I,J) * c(J,K).

227 b̂(I,J) :- â(I,K), b(I,J), c(J,K).
228 ĉ(J,K) :- â(I,K), b(I,J), c(J,K).

229 % booleanized program
230 goal :- a(I,I).
231 goal :- dead(X).
232 a(I,K) :- b(I,J), c(J,K).
233 % input type
234 b(I,J).
235 c(J,I).

The inferred type m̂ = abstract_fc(p̂) is

236 ĝoal. goal.
237 â(I,I). a(I,K).

238 b̂(I,J). b(I,J).
239 ĉ(J,K). c(J,K).

We see on #237 that only the diagonal a(I,I) is useful and the whole of a(I,K) is

possible, as we observed in our manual analysis earlier.

Lastly, we note that m̂ ⊆ m because we have added more constraints to the

inference problem. We can see on line 16.8 that ŷk is only true if yk.

6.2.2 Specialization Transformation

Given a particular type m̂,138 we can specialize our program p by instantiating

its rules against this type to see which rules will never (usefully) fire. Better yet,

we can specialize each rule to its useful instantiations. We provide pseudocode

in Algorithm 17.

Correctness.

Disjoint m̂. We require the branches of m̂ to be pairwise disjoint.

Disjointness guarantees that we can replace a rule r by nonoverlapping instanti-

138Note that the type m from §6.1 would work too (swapping ·̂ with · where it is needed);
however, but the resulting specialized program would be less efficient since m̂ ⊆ m.
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Algorithm 17 specialize: Specialize program p to the type m̂.
1. def specialize(p, m̂):
2. assert the simple types in m̂ are pairwise disjoint
3. p′ ← HI ▷ New program
4. for (x⊕= y1 ··· yK) ∈ p :
5. for ⟨C0, C1, ... , CK⟩ ∈ m̂[̂x]× m̂[ŷ1]× ··· × m̂[ŷK] : ▷ Expand against the type
6. C ← propagate(C0 C1 ··· CK)
7. if fail ∈ C : continue ▷ Safe to drop since it cannot fire

8. p′[x]⊕= y1 ··· yK C ▷ The constraints C become boolean side conditions

9. return p′

ations. This is needed to avoid double-counting. Given a disjoint useful type m̂,

we can specialize the rules of the program and its different cases. The way that

the specialization transformation works is to use the abstract instantiation of

the rule to gather constraints of the types that it can take on. Using those types,

we can add (concrete) constraints to the rule that partition it into its possible

cases. If there are overlapping types, we can take an inferred type m̂ and make

it disjoint by applying disjoin(m̂) (Algorithm 9) as a preprocessing step.

User parameters required. To leverage the user’s parametric types,

they must provide them in the input. Consider the two possible types form the

γ(X,Y) items in CKY (Example 18):

240 γ(X,Y) :- k(X), k(Y)
241 γ(X,Y) :- k(X), w(Y)

When the user provides a collection γ(X,Y) we do not know which have k(Y) and

which have w(Y). Thus, we require the user to provide these sets for our system

to make their type distinctions.139

We require the user to provide their parameters in addition to the input
139In some cases, it may be possible to automatically determine the user’s parameter sets from

the input data. A warning is printed if the user forgets to provide at least one instance for
each parameter.
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data. For instance, the CKY example requires the user to provide methods

that implement the n, k, and w constraints. This is done by defining them as

items along with the input data. Since these items are constraints, they are

{0, 1}-valued; only the 1-valued items need to be enumerated in the input data

D.140 Note that the < constraint that appears in CKY’s input type is a built-in

relation provided by the system.

6.2.3 Abbreviation Transformation

We extend the specialization transformation (§6.2.2) to abbreviate the names

of items as we did in the matrix-diagonal example earlier. Abbreviation is a

scheme that partitions each item by its possible simple types. It defines new

items that are named by their simple type and any (necessary) arguments.

Pseudocode is provided in Algorithm 18.

Correctness. Abbreviation and specialization (§6.2.2) are correct under

the same conditions.

Abbreviation vs. specialization. Unlike the specialization transforma-

tion, the abbreviation transformation can omit certain constraints from the

abbreviated program because they are statically guaranteed to hold given the

types in the body of the rule (see line 18.27). The specialization transformation
140They can be defined using rules, e.g., if sentence positions (n) are encoded as the integers
{1, ... , 10}, we can write n(X) :- 1 ≤ X ≤ 10.

141 The order of the tuple ⟨X1, ... , XM ⟩ is arbitrary, but it must be consistent for each t. Completely
free variables may be omitted from the tuple.

142When adding the rule on line 18.30, we must apply the multiplicity correction (§3.1.2.3) if any
free variables are summed in the abbreviation. We compute the set of local free variables in
the original rule to those in the abbreviated rule. If these sets of variables are unequal, we
-multiply the body of the new rule by (∞ · 1).
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Algorithm 18 abbreviate: Abbreviate program p according to the type m̂.
1. def abbreviate(p, m̂):
2. assert the simple types in m̂ are pairwise disjoint
3. p′ ← HI ▷ Will be the output program
4. ▷ Map the item x to the abbreviated name for the type identified by t
5. def abbrevt(x):
6. if x is a builtins and constants: return x
7. (x′ : - C ′)← fresh(m̂t)
8. ⟨X1, ... , XM⟩ ← the ordered141 set of variables in (x′ : - C ′)
9. θ ← unify(x,x′)

10. return θ(gent(X1, ... , XM)) ▷ Here gent is a novel symbol for simple type t

11. ▷ API preservation rules
12. for (x : - C) ∈ m̂ :
13. Assign a unique identifier t to the simple type (x : - C)
14. if t is an input:
15. ▷ Input items should not be abbreviated to preserve p’s API. The rule below feeds

the input items to the abbreviated items for its type t.
16. p′[abbrevt(x)]⊕=x C
17. else
18. ▷ The rule below recovers the original item from the abbreviated item; Note: the

rule added below is useless in p′ unless x is an output item.
19. p′[x]⊕= abbrevt(x)
20. for (x⊕= y1 ··· yK) ∈ p :
21. for ⟨C0, C1, ... , CK⟩ ∈ m̂[̂x]× m̂[ŷ1]× ··· × m̂[ŷK] :
22. C ← propagate(C1 ··· CK)
23. if fail ∈ C : continue
24. C ′ ← propagate(C0 C)
25. if fail ∈ C ′ : continue
26. ▷ The head’s type constraints must be checked, but the constraints in C can be

removed, as they are guaranteed to be satisfied.
27. C ′′ ← C0 ∖ C
28. ⟨t0, t1, ... , tK⟩ ← identifiers for the current simple types
29. ▷ Replace x and each yk with its type-specific abbreviation.142

30. p′[abbrevt0(x)]⊕= abbrevt1(y1) ··· abbrevtK (yK) C ′′

31. return p′

Here, the constraints C are required to ensure that the correct set
of input items are passed to this abbreviated item.
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could not do that because the subgoals are not split into their different types.

So a subgoal with more than one simple type could satisfy the constraints in

only some of the cases. This is not an issue in the case of abbreviation be-

cause the items are split into their disjoint simple types. Consider, again, CKY.

The subgoal rewrite(X,Y) has two possible simple types: γ(X,Y) :- k(X), k(Y) and

γ(X,Y) :- k(X), w(Y). So specialization cannot guarantee much about the con-

straint on Y, but abbreviation can because rewrite(X,Y) split into its two types.143

We provide an NLP example of abbreviate in Example 21.

Example 20. Consider the following program for the total weight of all paths

between pairs of nodes in a weighted graph:

242 path(I,I).
243 path(I,K) += edge(I,J) * path(J,K).

Suppose the input and output types are

D = {params: n. edge(I,J) :- n(I), n(J).} and D̂ = {path(I,K) :- n(I), n(J).}

Abbreviation produces the following program:

244 % map each input type to its abbreviation
245 edge0(I,J) += edge(I,J) * n(I) * n(J).
246 % recovery rules for useful output items
247 path(I,K) += path1(I,K).
248 % abbreviated rules
249 path1(I,I) += n(I).
250 path1(I,K) += edge0(I,J) * path1(J,K).

Notice that the nonground path(I,I) items are gone because the variable I is now

constrained to n(I).

Now, suppose we introduce a type (a) for the useful starting states:

143That said, we at least know that k(X) holds in both cases so that we could drop that constraint.
Our specialization transformation does not do this optimization, but a subsequent analysis
could do it.
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D = {params: a; n. edge(I,J) :- n(I), n(J).} and D̂ = {path(I,K) :- a(I), n(J).}

Under this API, abbreviate produces:

251 % map each input type to its abbreviation
252 edge0(I,J) += edge(I,J) * n(I) * n(J).
253 % recovery rules for useful items
254 path(I,K) += path1(I,K).
255 % abbreviated rules
256 path1(I,I) += a(I) * n(I).
257 path1(I,K) += edge0(I,J) * path1(J,K).

This version further constrains the path(I,K) items, as they must also satisfy a(I).
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6.3 Automatic Space and Time Analysis

This section builds on the type analysis provided by the methodology of §6.1

to develop an automated method for analyzing the space and time complexity of

a Dyna program p given data D. Given the types m associated with p, the key is

to find parametric upper bounds on their cardinality. We will then use these to

predict a parametric O-bound on the running time of forward chaining execution

of p(D). The bounds of this section assume that the program is executed with

the agenda-based fixpoint iteration algorithm of §5.

6.3.1 Space Analysis

To bound the space complexity of our fixpoint iteration algorithms for evaluat-

ing m = p(D), it suffices to bound the size of nz(m) because these algorithms only

have to store m.144 We will build on §6.1’s upper bound m ⊇ nz(m). We will use | s |

to denote the true cardinality of a set s and ⌈s⌉ ≥ | s | to denote an upper bound;

we extend the notation to programs by implicitly coercing them to sets through

nz(·). Our high-level approach is ⌈m⌉ def
=
∑

s∈m ⌈s⌉ ≥
∑

s∈m | s | ≥ |m | ≥ |m |,145

where the size | s | of a simple type s counts the number of satisfying assignments

144We assume that any additional data structures, such as those used to speed up the lookup
operations, increase the space complexity by only a constant factor. Additionally, we assume
that each value in V is constant-sized.

145If simple types in m overlap considerably, then the last inequality will be loose because
summation double-counts the overlapping regions. Removing subtypes (§6.1.2.4) addresses
the most egregious case, but future work may consider transforming m into a partition of
simple types as follows. Replace any overlapping pair of simple types s and t with s ∩ t, s∖ t,
and t∖ s. Repeat until no pairs s and t overlap. Set difference ∖ can be implemented using
negated versions of the elementary constraints—including equality (i.e., unification), which is
usually represented implicitly.
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to its variables, and ⌈s⌉ is an upper bound on this.

It is well-known that counting the variable assignments that satisfy a set

of constraints can be computationally expensive. However, the more important

issue in our case is that we do not even know how the parametric constraints

are defined. The remainder of this section considers how to construct a bound

⌈s⌉ from some user-supplied information about the parametric constraints.

Input Size Specification. Consider the simple type γ(X,W) :- k(X), w(W).

A straightforward upper bound can be found:

| γ(X,W) :- k(X), w(W) | ≤ ⌈k(X)⌉ · ⌈w(W)⌉ = k·w

where k and w are user-specified size parameters. (We will explain shortly how

size parameters are specified.) However, matters become more complicated when

there are multiple constraints on the same variable. Consider the simple type

258 β(X,I,K) :- k(X), n(I), n(K), I < K.

It is clear that at most k ·n·n assignments can satisfy the first 3 constraints. Addi-

tionally, imposing the fourth constraint I < K can only reduce that number—even

though the fourth constraint in isolation would have infinitely many satisfying

assignments (| I < K | =∞).

We will describe how to derive an upper bound from the sequence of con-

straints c1, ... ,cM in the body of the simple type s (including any constraints

added by propagation, as they may improve the bound). Reordering the con-

straints does not affect the number of satisfying assignments; however, each of

the M ! orders may give a different upper bound, so we select the tightest of these.
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The idea is to use conditional cardinalities. Let V be any set of variables.

While c may be satisfied by many assignments to its variables, only some are

compatible with a given assignment to V. Suppose the user supplies a number

⌈c | V⌉ such that no assignment to V can be extended into more than ⌈c | V⌉

assignments to vars(c). The case ⌈c | V⌉ = 1 is of particular interest: this is

necessarily true if vars(c) ⊆ V and asserts a functional dependency otherwise.

For a simple type s of the form x : -c1, ... ,cM , we can obtain an upper bound

on the cardinality of s: | s | ≤
∏M

m=1 ⌈cm | V<m⌉, where V<m =
⋃m−1

i=1 vars(ci).146

More generally, an upper bound on the conditional cardinality of s, given an

assignment to some set of variables V, is
∏M

m=1 ⌈cm | V ∪ V<m⌉. Minimizing this

over all orderings gives our final upper bound ⌈s | V⌉ (with ⌈s⌉ def
= ⌈s | ∅⌉).

But where do the bounds ⌈c | V⌉ come from? Consider the built-in constraint

times, which is an infinitely large relation on three numbers. Because times has

functional dependencies, we can take ⌈times(X,Y,Z) | V⌉ = 1 whenever V contains

at least two of {X, Y, Z}. We allow a user to declare this conditional cardinality

with the following notation:

259 |times(+X, +Y, Z)| ≤ 1.
260 |times(X, +Y, +Z)| ≤ 1.
261 |times(+X, Y, +Z)| ≤ 1.

For example, #261 declares that given values for X and Z, the times(X,Y,Z) con-

straint will be satisfied by at most one value of Y.

Given all such declarations, we obtain ⌈c | V⌉ as the min of the upper bounds

provided by conditional cardinality declarations that unify with c and whose

146Provided that all variables in the head x are constrained somewhere in the body. If not,
| s | =∞.
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variables marked with + are all in V. This includes an implicit declaration that

⌈c | vars(c)⌉ ≤ 1. (Another implicit declaration is ⌈fail⌉ ≤ 0.)

The same notation is useful for bounding input relations, such as the word

relation in Example 6.

262 |word(W, +I, K)| ≤ 1.

263 |word(W, I, +K)| ≤ 1.

264 |word(W, I, K)| ≤ n.

The first declaration says that there is at most one word W, paired with a single

end position K, starting at each position I. The second declaration is the mirror

image of this. The third says that there are at most n words overall in the input

sentence—where the symbol n is a size parameter.

We may also use size parameters to bound the cardinality of type parameters:

265 |k(X)| ≤ k. |n(I)| ≤ n. |w(W)| ≤ w.

which bounds the number of nonterminals by k, sentence positions by n and ter-

minals by w. Here k, n, and w are interpreted as symbols. We will combine these

symbols to form a parametric expression that upper bounds the cardinality

of the items in the program. For example, as we saw earlier, ⌈β(X,I,K)⌉ = kn2.

After adding up the sizes of simple types, our system can compute an asymptotic

upper bound on the resulting expression, e.g., kn2 + kn+ k2n = O(knmax(n, k)).

A final trick is to specify the cardinality or conditional cardinality of a com-

posite constraint, which can be matched against a subsequence of c1, ... ,cM

when constructing an upper bound. For example, |even(X),prime(X)| ≤ 1 says that

there is only one even prime, while |γ(X,Y), k(Y)| ≤ g says that no nonterminal

symbol X can rewrite as more than g different nonterminal symbols Y. (It does
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not, however, constrain how many ways X can rewrite as a terminal symbol Y

because these do not satisfy the k(Y) constraint.)

Limitations.

• Certain infinite relations, such as those that can be expressed with free vari-

ables and delayed constraints, have an estimated size of∞ under this approach

(cf. footnote 146). However, certain infinite relations can be represented ef-

ficiently by the solvers in §5 as finite-size programs. However, because our

approach is based on bounding the number of non-0 items rather than the size

of their representation, our size estimates end up extremely loose.

• We assume that all built-in relations ground out all variables that appear

in them. Future work should integrate a more sophisticated mode system

(e.g., Overton (2003) and Filardo (2017)) for reasoning about the instantiation

states of variables. Mode analysis can also be used to reason about the set of

delayed constraints, so it should help address the limitation mentioned earlier.

• Our space bounds are always (piecewise) polynomials in the input-size param-

eters; they cannot express exponential size bound, for example.

6.3.2 Time Analysis

Suppose that the Dyna program is executed by the agenda-based algorithm

(Algorithm 8). This algorithm maintains two programs: the chart m and the

agenda d. The chart represents the current estimate of the fixpoint (§4.3). The
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agenda is a queue of updates to be applied to the values in m. When an update

to y ′ is popped, its value is updated in the chart. This change is then propagated

to other items x . The updates to these x items are placed on the agenda and

carried out only later. Crucially, the affected x items are found by matching y ′

(the driver) to any subgoal of any rule x⊕= ··· , and then querying the chart for

items (passengers) that match that rule’s other subgoals.

Propagating an update from a given driver y ′ through a rule r requires us

to find all the satisfying assignments to body(r) that are consistent with binding

the driver subgoal to y ′. Although r is not a type, a subgoal in its body such as

γ(X,Y) does impose a constraint on X and Y—namely the constraint γ(X,Y) from our

type analysis (§6.1), which is true only if γ(X,Y) could have a value in the chart.

Suppose we have matched a driver y ′ against a subgoal of r and have already

matched 0 or more other subgoals to passengers retrieved from the chart. These

matches have instantiated some variables V in the rule. For each subgoal match,

we also know from our static type analysis (§6.1.2) that the variables involved in

that match must have satisfied certain constraints C. If γ(X,Y) is the next subgoal

that we will match against the chart, we will get at most N def
= ⌈C, γ(X,Y) | V⌉

answers. Our methods from the previous section can compute this upper bound

even though γ is not a built-in or parametric constraint: simply refine the item

type m by unifying the heads of all simple types s ∈ m with γ(X,Y), and then

upper-bound the conditional cardinality of this refined type m′.

Thanks to the indexing of the chart, the runtime of getting and processing N

answers is proportional to 1 +N in the worst case (with the 1 representing the
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overhead of attempting the query even if there are no answers). For each answer,

we must then proceed to match the remaining passengers in all possible ways.

The pseudocode in Algorithm 19 makes this precise. Two subtleties are worth

pointing out. First, m is disjunctive. The constraints C that we accumulate from

previously matched passengers depend on the particular simple types that cover

those passengers, so we must iterate through all possibilities. Second, while the

driver subgoal is chosen by the agenda, the order in which to instantiate the

remaining subgoals (passengers) is up to us. The pseudocode always chooses

the next subgoal that will minimize the upper bound on runtime, given the

simple types of the previously matched passengers. In other words, instead of

following the fixed subgoal order stated in rule r, we are using our static analysis

to optimize the subgoal ordering to have better running time.147

Correctness and Limitations. The running time bound produced by

Algorithm 19 assumes that the number of times an item drives is constant. If the

program is acyclic, then the topologically ordered agenda (§5.1.4) guarantees that

each item is popped at most once, so the bound is correct. However, if the program

is cyclic, items may drive more than a constant number of times. In the cyclic

case, we can interpret our bound as the worst-case complexity of one iteration of

147Future work may wish to explore methods that directly optimize the average execution time
of the passenger query order in place of our upper bound. The average execution time could
be estimated and optimized using machine learning techniques. Vieira, Francis-Landau, et al.
(2017) describe a general framework for such optimization. In their terminology, the specific
passenger ordering would be a strategy for the task of answering the passenger query. Their
method would additionally allow the ordering choice to be made dynamically by a policy that
has access to the specific passenger query (i.e., it is not limited to just its type) and the status
of the available indexing data structures.
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Algorithm 19 runtime: Infer a runtime bound for p given a derived type m.
1. def runtime(p,m):
2. t← 0 ▷ Accumulator
3. for

(
y ′ : - C ′

)
∈ m : ▷ Possible driver types

4. for (x⊕= y1 ··· yK) ∈ p :
5. for k ∈ [1:K] :
6. for _ ∈ unify(yk, y

′) :
7. ▷ Add the cost of driving the current rule
8. t += runtime′( {y1, ... , yK} − {yk} , C ′, vars(yk)) ▷ Note: y ′=yk due to unify

9. return t
10. ▷ This recursive function (which can be memoized for efficiency) tells us the op-

timal runtime for a set of subgoals (P), with C being the set of conjunctive con-
straints that have been accumulated and V the set of bound variables.

11. def runtime′(P , C,V):
12. if P = ∅ : return 1 ▷ Base case: no subgoals remaining

13. best ←∞
14. ▷ Optimize over the choice of next subgoal p from the set of remaining subgoals
15. for p ∈ P :
16. t← 0 ▷ Accumulate total suffix runtime (given choice p)
17. for ⟨C ′,θ⟩ ∈ m[p] : ▷ Lookup simple types in m that match p. Note: we

require an explicit result stream here (§3.1.2.1).
18. C ′′ ← propagate(θ(C C ′))
19. q ← ⌈C ′′, p | V⌉ ▷ Lookup conditional cardinality for passenger p
20. if q = 0 : continue ▷ For efficiency, avoid recursive call

21. t += q ·runtime′(θ(P−{p}), C ′′,V ∪ vars(p)) ▷ Recurse

22. best min= t
23. return 1 + best

Matching rules against driver y ′

Passengers

seminaive (Algorithm 7) as a function of the input-size parameters rather than the

total complexity of execution. To obtain the total complexity, we must adjust the

bound to account for the number of times each simple type may pop, which may

depend on the input-size parameters and the prioritization strategy used.148,149

Other limitations: Because our runtime bounds are built on the space com-

plexity analysis from §6.3.1, we inherit its limitations. In particular, our bounds

148Discussion of approximate fixpoints and convergence rates is provided in §4.4.
149Recall (§5.4) that a cyclical program can be solved more efficiently by decomposing it into

strongly connected components. Future systems for reasoning about the running time of
solving cyclical programs should include a static SCC decomposition analysis.
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are (piecewise) multivariate polynomials in the input-size parameters. This

means, for example, that our system cannot infer an exponential runtime bound;

it would instead predict an infinite running time, as it is impossible to upper

bound an exponential with a polynomial. We also mention that our runtime ana-

lyzer produces an infinite upper bound whenever an infinite-cardinality delayed

constraint might appear in the chart, even though our execution algorithms do

not incur an infinite runtime cost when working with them. Lastly, our bounds

assume that semiring operations run in constant time.

Ideas for future work: Static analysis of cyclicity or, more generally, the

strongly connected components of a program would clearly be useful for im-

proving our running time analysis. It would also be useful to have runtime

bounds for the other algorithms in § 5 (e.g., newton). Our general approach of

simulating the work done in each iteration of these algorithms should translate

straightforwardly. It would also be interesting to provide runtime bounds that

are specialized to specific families of semirings (e.g., commutative idempotent

semirings), as they may have finite-time convergence guarantees.

6.4 Applications

This section provides additional examples of our static analyzer.

Example 21. Kuhlmann, Gómez-Rodríguez, et al. (2011) introduce an exact

dynamic program for arc-eager parsing (Nivre, 2003) when the scoring function

is arc-factored (Eisner, 1996). A Dyna encoding of their algorithm is given below:
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266 β(I,I^0,K) += word(I,K).
267 β(I,I^1,K) += word(I,K).
268 β(I,H^B,K) += β(I,H^B,J) * score(H ← H’) * β(J,H’^0,K).
269 β(I,H^B,K) += β(I,H^B,J) * score(H → H’) * β(J,H’^1,K).
270 goal += β(0,0^0,N) * len(N).
271 params: word; score; len.

Naïvely, one could think that the arc-eager parser runs in O(n5). However, a

tighter analysis reveals it actually runs in O(n3). To derive this, consider the

following type declaration:

272 params: n(N).
273 score(H → H’) :- n(H), n(H’).
274 score(H ← H’) :- n(H), n(H’).

275 word(I,K) :- n(I), n(K).

276 len(N) :- n(N).

The derived types are

277 β(I,I^0,K) :- n(I), n(K).
278 β(I,I^1,K) :- n(I), n(K).

279 goal.

What is surprising about the derived types is that, although the rules suggest

that H in β(I,H^B,K) may independently range over n, it turns out that it is always

equal to I because only types that unify with it are β(I,I^0,K) and β(I,I^1,K). Now,

we consider the running time with the following input-size declarations:

280 |n(N)| ≤ n.

The inferred runtime bound is O(n3).

Abbreviation (below) successfully drops the unnecessary variable, which im-

proves the running time by a constant factor. The program below is isomorphic

to the one that Kuhlmann, Gómez-Rodríguez, et al. (2011) discovered manually.

We have dropped the n(I) constraints to make the output more readable. We

have chosen abbreviated names that are similar to their original ones; we use

subscripts to indicate the simple type’s identifier.
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281 % Map each input type its abbreviation
282 score0(H,H’) += score(H → H’).
283 score1(H,H’) += score(H ← H’).
284 word2(I,K) += word(I,K).
285 len3(N) += len(N).
286 % recovery rules
287 β(I,I^0,K) += β4(I,K).
288 β(I,I^1,K) += β5(I,K).
289 goal += goal6.
290 % abbreviated program rules
291 β4(I,K) += word2(I,K).
292 β4(H,K) += β4(H,H’) * score0(H,H’) * β5(H’,K).
293 β4(H,K) += β4(H,H’) * score1(H,H’) * β4(H’,K).
294 β5(I,K) += word2(I,K).
295 β5(H,K) += β5(H,H’) * score0(H,H’) * β5(H’,K).
296 β5(H,K) += β5(H,H’) * score1(H,H’) * β4(H’,K).
297 goal6 += β4(0,N) * len3(N).

these are useless recovery rules that can be dropped

these items are flattened (nested terms are remove)

The inferred runtime bound is unchanged by the abbreviation transformation.

Example 22. Below we give another version of CKY (Example 6) that encodes the

input sentence as a list, e.g., sentence([papa, ate, the caviar]). This version takes

the encodes the weighted production rules as γ(X,Y,Z) and γ(X,Y) like before, but it

does not require the sentence to be encoded with the word(W,I,K) or length(N) items.

As before, the item goal sums the total weight of all complete parses.

298 params: input; γ. output: goal.
299 buffer(Ws) += sentence(Ws). % initialize the buffer
300 buffer(Ws) += buffer([W|Ws]). % shift
301 β(X,[W|Ws],Ws) += γ(X,W) * buffer([W|Ws]).
302 β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).
303 β(X,I,K) += γ(X,Y) * β(Y,I,K).
304 goal += β(s,Ws,[]) * sentence(Ws).

We specify the following input type:

305 params: w; ws; k.
306 γ(X,Y,Z) :- k(X), k(Y), k(Z).
307 γ(X,Y) :- k(X), k(Y).
308 γ(X,W) :- k(X), w(W).
309 sentence(Ws) :- ws(Ws).

same as Example 18

Recall that k is the set of nonterminals and w is the set of words. The types for
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the grammar rules are the same as the version of CKY that we analyzed in §6.1.

We define the input as type ws, which is a list of words. When we add the

following propagation rules to encode that each of suffix of our list of words is

also a list of words.

310 ws([]) <== true.
311 ws(Xs) <== ws([X|Xs]).

Lastly, we add the following propagation rules

312 w(X) <== ws([X|Xs]).
313 fail <== k(X), w(X).

The first rule says that the first element of a word list is a word, and the second

rule says that the set of nonterminals k is disjoint from the set of words w.

Abstract forward chaining derives the following type for the derived items

314 buffer(Xs) :- ws(Xs).
315 β(X,I,K) :- k(X), ws(I), ws(K).

316 goal.

The runtime bound is the same as in ordinary CKY, O(k3 n3), except that

instead of encoding the input length as the number of sentence positions

317 |n(I)| ≤ n

we encode it as the number of suffixes in the input sentence

318 |ws(Ws)| ≤ n.

The abbreviation transformation, in this case, is not interesting; all it does

is change the names of the existing items with no benefit.
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Summary

This chapter developed several techniques for reasoning about a given pro-

gram independently from specific input data. We described our system for

deriving symbolic upper bounds on the program’s set of non-0-valued items as a

function of input data characterized by unknown, symbolic user parameters. We

built on that technique to estimate the set of useful for answering queries about

a specific set of output items. We then used the estimated set of useful items

to specialize the program so that it computes them more efficiently by omitting

useless items. We then turned our attention to space and time complexity anal-

ysis. We describe an approach for bounding the size of the set of non-0 items

as a function of user-specified size parameters. We related this bound to the

space complexity of agenda-based fixpoint iteration. We then gave a technique

for analyzing the runtime complexity of agenda-based fixpoint iteration as a

function of the input-size parameters. We will revisit the complexity bounds and

the program specialization techniques in our program optimizer (§8).
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Chapter 7

Program Transformations

In this chapter, we will develop a collection of meaning-preserving program-to-

program transformations. These transformations will be used to systematically

transform a given initial program into a faster program that computes the same

values in §8.

Intuitively, program transformations may be regarded as reusable tricks for

transforming one set of recursive definitions (a Dyna program) into a different

(possibly faster-to-evaluate) set of recursive definitions (a different Dyna pro-

gram). Since a Dyna program is essentially a system of equations that defines a

valuation function (§4), we may regard program transformations much like the

mathematical identities used to manipulate systems of mathematical equations

(e.g., to solve them or to prove a new identity). Program transformations may be

applied manually or automatically.

Program transformations—unlike execution algorithms (§5)—can operate
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without concrete input data.150 Thus, many transformations correspond to steps

of abstract interpretation (Cousot and Cousot, 1977) in that they simulate steps

taken by some concrete solver. Thus, we introduce input and output decla-

rations: we assume that the initial program in our transformation sequence

declares some items as input and/or output items. The rest are considered in-

termediate items. Below is an example of CKY with input–output declarations.

319 β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).
320 β(X,I,K) += γ(X,Y) * β(Y,I,K).
321 β(X,I,K) += γ(X,Y) * word(Y,I,K).
322 goal += β(s,0,N) * len(N).
323

324 input: word(X,I,K); γ(X,Y,Z); γ(X,Y); len(N).
325 output: goal.

To be considered correct, a program transformation must preserve the mapping

from the valuation of the input items to the original program’s valuation of the

output items (§4). However, a program transformation can introduce, destroy,

or alter intermediate items.151

same code

input–output declarations

Outline. In what follows, we will give an informal overview of the speedups

that are achievable through program transformations—providing a more formal

treatment of each transformation in a later section.

7.1 Informal Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2 Semantics-Preserving Transformations . . . . . . . . . . . . . . . 152

7.3 Definition-Introduction Transformation . . . . . . . . . . . . . . . 156

7.4 Fold and Unfold Transformations . . . . . . . . . . . . . . . . . . . 160

150Static analysis (§6.1) are another example.
151We will formalize notions of transformation correctness and program equivalence in §7.2.
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7.5 Hoisting Transformations . . . . . . . . . . . . . . . . . . . . . . . 186

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.1 Informal Introduction

This section provides an overview and general flavor of the types of trans-

formations we will develop in this chapter. We defer formal details of each

transformation to later sections. We also note that the method of §6.3 can be

used to automatically derive the big-O bounds on space and time complexity in

the examples below.

Define and fold. We start our discussion with non-recursive folding, as

we expect it will be familiar to most readers.

Example 23. The following program computes the total weight of length-4 paths

in a graph with edge weights w:

326 total += w(Y1,Y2) * w(Y2,Y3) * w(Y3,Y4) * w(Y4,Y5).

By exploiting the distributive property, we can rewrite this program into one that

reuses partial sums of products for each path-suffix length:

327 total += rest1(Y1).
328 rest1(Y1) += w(Y1,Y2) * rest2(Y2).
329 rest2(Y2) += w(Y2,Y3) * rest3(Y3).
330 rest3(Y3) += w(Y3,Y4) * rest4(Y4).
331 rest4(Y4) += w(Y4,Y5).

This program computes the same value for total, but it is significantly more

efficient to evaluate than the original program. Specifically, the original pro-

gram runs in time O(N5) where N is the number of nodes in the graph, and
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the transformed program runs in time O(N2). This is an example of the def-

inition transformation, which proposes the new resti definitions, and the fold

transformation, which grafts these definitions into the program.

Readers may recognize that the junction tree algorithm exploits the same

transformation scheme (Lauritzen and Spiegelhalter, 1988; Shafer and Shenoy,

1990) for inference in probabilistic graphical models and join-order optimization

in database query planning (Chekuri and Rajaraman, 1997). Gildea (2011)

discusses many uses of the junction tree algorithm in weighted deduction

systems used in NLP. However, these approaches do not transform recursive

computations—they are targeted at a fixed set of variables rather than an

unbounded set as in recursive computations.152

Example 24. Recall that CKY (Example 6) has the following expensive rule

332 β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).

This rule can be sped up by summing over the variable Y separately from K:

333 β(X,I,K) += tmp(I,J,X,Z) * β(Z,J,K).
334 tmp(I,J,X,Z) += γ(X,Y,Z) * β(Y,I,J).

The transformed rules reduce the running time fromO(K3N3) toO(K2N3 +K3N2)

where K is the number of nonterminals, and N is the sentence length.153

Unfold. The unfold transformation is essentially the inverse of the fold

transformation and corresponds to inlining code. It takes as input a specific

152We note that GMTK (Bilmes and Zweig, 2002) provided a Junction tree optimizer that could
optimize a recursive graphical model, but to our knowledge, their system did not statically
optimize across recursive levels, as we do in this chapter.

153In NLP, this kind of transformation is often referred to as a hook trick (Eisner and Satta,
1999a; Huang, Zhang, et al., 2005; Gildea, 2011).
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subgoal yk ∈ body(R) of some rule R. The goal is to replace yk within R by its

definition; however, its definition may span multiple rules R′. Therefore, we will

remove R from the program and replace it with a specialized version of R for

each rule R′ whose head unifies with yk. These rules R′ define yk—except in the

special case where yk matches any input items, in which case we cannot unfold

yk because its complete definition is not available. Note that unfolding can make

some rules obsolete.154

Example 25. Suppose the user provided the inefficient program below, which

could have been obtained by folding Example 23 in a suboptimal manner.

335 goal += tmp1(X1,X4,X5).
336 tmp1(X1,X4,X5) += tmp2(X1,X4) * w(X4,X5).
337 tmp2(X1,X4) += tmp4(X1,X2) * tmp3(X2,X4).
338 tmp3(X2,X4) += w(X2,X3) * w(X3,X4).
339 tmp4(X1,X2) += w(X1,X2).

While the above program is correct, its runtime is O(N3), which is worse than the

O(N2) version we saw before. It has no variables that can be eliminated, so there

are no fold actions or new definitions that can improve its runtime complexity.

To improve it, we first have to undo the poor choices. If we unfold Example 25

multiple times, we can arrive at the version in Example 23. From there, we can

refold to get the same efficient version.

An unfold transformation will usually increase or preserve the program’s

runtime degree, but there are exceptions:

Example 26.
154Recall that the methods in §6.2 can identify and remove rules that cannot fire based on the

declared inputs or are unused by any of the declared outputs.
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340 a(I,K) += b(I,J) * c(J,K).
341 trace += a(L,L).

Unfolding a(L,L) in #341 decreases the program’s runtime from O(N3) to O(N2)

assuming N upper bounds cardinality of any of variables in the program.

342 trace += b(L,J) * c(J,L).
343 a(I,K) += b(I,J) * c(J,K).

Thus, this is an example of an immediately useful unfold. The program, in this

case, computes the trace of a matrix product, and the role of unfold is to specialize

the sub-program that computes the entire matrix product a(I,K) to the site where

the product is used, which only seeks its diagonal a(L,L). Such optimizations are

easy for programmers to miss.155

Transforming recursion. In the following example, we transform an in-

ductive definition—effectively eliminating a variable that is propagated through

an (unbounded) recursion. Such a rewrite is impossible with only the tools from

probabilistic graphical models and database query planning.

Example 27. We begin with the following program, which computes the total

weight (goal) of all paths in a graph that start in a set start and end in a set stop.

344 goal += start(I) * path(I,K) * stop(K).
345 path(I,I).
346 path(I,K) += path(I,J) * edge(J,K).

The running time of this program is O(N3), where N is the number of nodes

in the graph. We will derive a more efficient O(N2) program by replacing the

intermediate path(I,K) items, which compute the total weight of all paths from I to
155Many numerical libraries (e.g., Theano Development Team (2016), Abadi et al. (2016), and

Smith and Gray (2018)) capture optimizations like this one. However, like the case of
graphical models, these systems are limited because they do not reason about recursively
defined computations.
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K for all pairs of nodes I and K, with startpath(K), which computes the total weight

of paths from any node in start to a node K.

Suppose we generate a new set of items that are—at least initially—defined by

the following rule, which is appended to our program:

347 startpath(K) += start(I) * path(I,K).

Next, we fold #344 by #347:

348 goal += startpath(K) * stop(K).

As in Example 23, by introducing an intermediate item—in this case, startpath—

we have managed to reduce the running time of #344 as its replacements #348

and #347 run in O(N +N2) instead of O(N3). Unfortunately, startpath still

depends on path, which is currently the running time bottleneck for the program.

Thus, we will attempt to rewrite startpath in terms of itself rather than path. Our

next step is to unfold the path subgoal in the startpath rule (#347):

349 startpath(K) += start(K).
350 startpath(K) += start(I) * path(I,J) * edge(J,K).

Next, we recognize that start(I) * path(I,J) on #350 can be replaced by startpath(J)

by folding according to its earlier definition (#347). We now have

351 startpath(K) += start(K).
352 startpath(K) += startpath(J) * edge(J,K).

Finally, a useless-rule elimination procedure (§6.2) detects that the path rules are

not reachable from goal, which is our only declared output. Our final program is

353 goal += startpath(K) * stop(K).
354 startpath(K) += start(K).
355 startpath(K) += startpath(J) * edge(J,K).
356 path(I,I).
357 path(I,K) += path(I,J) * edge(J,K).
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The running time of our improved program is O(N2).

Notice that not all folds are safe. For example, if instead of unfolding #347,

we immediately folded the definition of startpath with itself, we would have the fol-

lowing ill-founded definition: startpath(K) += startpath(K). In §7.4, we will describe

sufficient conditions to reject these bad folds and ensure safe folding.

Notice that to replace path in this example, we needed to generate a new relation

startpath, which could replace it. Although startpath was initially defined in terms

of path—through a few transformations—it became self-sufficient. Because dis-

covering new definitions—like startpath—-often require “divine inspiration;” such

definitions are affectionately called Eureka definitions (Pettorossi and Proietti,

1994). Fortunately, there are many common strategies for proposing plausible

Eureka definitions, such as joining existing subgoals as we did. We discuss the

strategies used by our system in §7.3.

The next example follows the same general recipe as Example 27, except here

we synthesize an efficient dynamic programming algorithm from an inefficient

program that explicitly sums over the infinitely many paths in a graph where

each path is specified as a list of its visited nodes.

Example 28. The following program sums the total weight of all paths in a

graph. It is written in a very direct style as a list of nodes visited along the path.

358 goal += start(X) * β([X|Xs]).
359 β([X1,X2|Xs]) += edge(X1,X2) * β([X2|Xs]).
360 β([X]) += stop(X).

As it is written, this program is horribly inefficient as there might be infinitely
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many paths, which translates into infinitely many non-0 β items. To speed this

program up, we introduce the following definition, which sums the tail of the list

Xs while exposing the first node X in the path:

361 b(X) += β([X|Xs]).

Next, we unfold #361 and obtain the following two rules that replace it:

362 b(X1) += edge(X1,X2) * β([X2|Xs]).
363 b(X) += stop(X).

We subsequently fold #362 by #361:

364 b(X) += b(Y) * edge(X,Y).
365 b(X) += stop(X).

Now, b is recursively defined in terms of itself rather than in terms of its original

specification in #361 that made use of the inefficient β items. Moreover, there

are finitely many non-0 b items since there are finitely many nodes in the graph.

Lastly, we fold #358 by #361 to graft b into the rule for goal:

366 goal += start(X) * b(X).

The final program is given below; we note that the β items are available, but the

rules are now useless for deriving the goal, so the solver does not need to run them.

367 goal += start(X) * b(X).
368 b(X) += b(Y) * edge(X,Y).
369 b(X) += stop(X).
370 β([X,Y|Xs]) += edge(X,Y) * β([Y|Xs]).
371 β([X]) += stop(X).

Speculation and left-corner transformations. The example below

briefly shows a useful rearrangement of recursive equations through the specu-

lation transformation (§7.5).

Example 29 (Unary Cycle Factoring; adapted from Eisner and Blatz (2007)).
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Consider again the CKY program (Example 6):

372 β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).
373 β(X,I,K) += γ(X,Y) * β(Y,I,K).
374 β(X,I,K) += γ(X,W) * word(W,I,K).
375 goal += β(s,0,N) * len(N).

This program has an inefficiency: it repeats the same unary-chain closure for all

spans ⟨I, K⟩. Our use of speculation will refactor the program (see below) so that

unary chain closures may be precomputed (independently of the sentence) and

reused at each span. This implementation trick—attributed to Stolcke (1995)—is

standard in probabilistic parsing.

376 u(X,X’) += γ(X,Y) * u(Y,X’).
377 u(X,X’) += γ(X,X’).
378 β(X,I,K) += u(X,X’) * β’(X’,I,K).
379 β(X,I,K) += β’(X,I,K).
380 β’(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).
381 β’(X,I,K) += γ(X,W) * word(W,I,K).
382 goal += len(N) * β(s,0,N).

(A nearly identical program optimization can be achieved with the closely related

left-corner transformation (§7.5.2).)

Next steps. In this section, we have provided a high-level idea of the

program transformations that we develop in this chapter. In what follows, we

will formalize each of the transformations and give further examples of how

they are used and when they are useful. But first, we will formalize program

equivalence and transformation safety.

151



7.2 Semantics-Preserving Transformations

We say that a program-to-program transformation p(s) −→ p(t) is semantics-

preserving (or safe, for short) if the programs p(s) and p(t) are semantically

equivalent, i.e., they define precisely the same valuation mapping (§4).156 As

a shorthand, we write p(s) ≡ p(t) to assert (or stipulate) that the two programs

are semantically equivalent. In other words, p(s) ≡ p(t) ⇐⇒ p(s)JxK = p(t)JxK for

all x ∈ H. We will also make use of the following stronger notion of semantic

equivalence, which implies the former (Proposition 5).

Definition 31. We say that p(s) and p(t) are strongly equivalent if there exists

a value-preserving bijection ϕ
s→t

: p(s){·} −→ p(t){·} where p(s){·} and p(t){·} are the

set of all derivations in p(s) and p(t), resepectively.

Definition 32. The function ϕ : p(s){·} → p(t){·} is a value-preserving bijection

if and only if for all δ′ ∈ p(t){·}, there exists a unique δ ∈ p(s){·} such that ϕ(δ) = δ′,

JδK = Jδ′K, and that δ and δ′ have the same root label.

Intuitively, for each item x , the function ϕ
s→t

describes the translation from

derivations p(s){x} that use the rules in p(s) to derivations p(t){x} that use the

rules in p(t). However, value preservation restricts the translation such that the

value contributed by each derivation of x is the same. Bijectivity ensures that

no derivations are lost and no spurious derivations are created.

156Note that §4 does not directly discuss the semantics of partially specified programs, i.e., those
with input relations. Fortunately, input relations can be reduced to built-in relations because
they are simply items whose meanings are specified outside of the current program.

152



Example 30. Consider the geometric series program. We will illustrate how

systematically different sets of derivations of different programs can index a

common bag of contributions to the value of a given item x.

p(0) =

{
383 x += b.
384 x += a * x.

The value x is equal to the sum of a bag of (infinitely many) values, JxK = b +

a b+ a2 b+ a3 b+ a4 b+ a5 b+ a6 b+ ··· . Below, we show 7 (of the infinitely many)

derivations of the item x. We see that the values of each derivation (i.e., the product

of its leaves) correspond to the sequence of summands above.

p(0){x} =
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a x

a x

a x

b

x

a x

a x

a x

a x

a x

a x

b

· · ·


The program p(1) below (obtained by unfolding #384) is strongly equivalent to the

program above, p(1)
strong
≡ p(0).

p(1) =

{
385 x += b.
386 x += a * b.
387 x += a * a * x.

To see why we inspect the derivations of the item x. Below, we have ordered the

derivations p(1){x} so that the left-to-right ordering shows the correspondence (i.e.,

bijection) to p(0){x}.
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p(1){x} =



x

b

x

a b

x

a a x

b

x

a a x

a b

x

a a x

a a x

b

x

a a x

a a x

a b

x

a a x

a a x

a a x

b

· · ·


By inspecting the leaves of the trees, we see that each of the values of the deriva-

tions can be aligned to exactly one of the original derivations (and vice versa). In

other words, there is a value-preserving bijection between p(0){x} and p(1){x}.

In the program below, we have systematically moved b up to the root of each

derivation—leaving 1 in b’s original position.

p(2) =

{
388 x += x’ * b.
389 x’ += a * x’.
390 x’ += 1.

p(2){x} =



x

x’

1

b

x

x’

a x’

1

b

x

x’

a x’

a x’

1

b

x

x’

a x’

a x’

a x’

1

b

x

x’

a x’

a x’

a x’

a x’

1

b

x

x’

a x’

a x’

a x’

a x’

a x’

1

b

x

x’

a x’

a x’

a x’

a x’

a x’

a x’

1

b

· · · 
Notice, that p(2) defines a new item x’, which has the value Jx’K = 1+ a+ a2+ ··· =

a⋆. However, p(0)Jx’K = 0 because x’ was not defined in p(0). To be semantics-

preserving, we require that x’ be defined in p0. Since the name x’ is not taken in
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p(0) it is safe to add the following (unused) rules to p0 that define the x’ items.

p(0
′) =


391 x += b.
392 x += a * x.
393 x’ += a * x’.
394 x’ += 1.

By adding the definitions to p(0) ̸≡ p(2), we get p(0′) ≡ p(2). Augmenting the program

with new definitions is what we call a definition introduction transformation

(§7.3). Introducing new intermediate quantities is one of the most powerful

methods at our disposal for devising a more efficient version of a given program.

In general, whenever a transformation introduces a new definition, we ensure

that the newly named items do not conflict with any other items in the universe

of programs. Furthermore, we will add these definitions to all programs in the

universe so they remain semantically equivalent.

Definition introduction. We treat definition introduction (§7.3) as in

Tamaki and Sato (1984). When a transformation introduces a definition, we

pretend it was introduced in the original program and propagate it throughout

all programs derived from it. Under this scheme, the earlier programs would

be retroactively augmented with the definition even though they did not tech-

nically have it when they were created. Maintaining a global symbol table for

all programs in the universe is important to ensure that a transformation does

not introduce a new definition that conflicts with any prior definition’s name,

including inputs and builtins.

Equivalence relation. As the name suggests, semantic equivalence (≡)

is an equivalence relation. Thus, we can represent programs found through

transformations using an undirected graph where the nodes are programs, and
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an edge exists between programs p and p′ if (p ≡ p′). However, since ≡ is

reflexive, symmetric, and transitive, not all edges need to be explicit. Instead,

p and p′ are equivalent if an (undirected) path exists between them. Since

testing the semantic equivalence of any pair of programs is undecidable,157 the

graph of equivalent programs will be incomplete. In other words, we can only

approximate it by including (directed) edges between programs that we can

prove are equivalent (e.g., if a semantics-preserving transformation from p to p′

exists, we add the edge)—this means that if an edge exists, we are certain the

programs are equivalent, and if no edge, then the programs might be equivalent.

Thus, any equivalence deduced by closure is sound.

7.3 Definition-Introduction Transforma-

tion

The definition-introduction transformation augments an existing program

with rules defining some new set of items. We assume that the names of these

items are distinct from the existing items. It is subsequently the job of the fold

and unfold transformations to graft these new definitions into the program. We

can often effectively replace the original definitions with new ones. Example 27

demonstrated how a new definition startpath could be transformed to be self-
157Even testing the equivalence of a Dyna program without variables is undecidable. This

is because Dyna programs can directly encode the language generated by a context-free
grammar (CFG). Thus, determining if two Dyna programs are equivalent is at least as hard
as deciding whether two context-free grammars generate the same language, which is an
undecidable problem (Hopcroft et al., 2007).
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sufficient and grafted into the main program by folding it into the goal rule—

replacing the more expensive path relation. In general, discovering alternative

definitions can require “divine inspiration.” Thus, as we mentioned earlier, such

rules are affectionately called Eureka definitions in many works in the program

transformation literature (Pettorossi and Proietti, 1994).

The most common technique for proposing plausible Eureka definitions is the

tupling technique (Pettorossi and Proietti, 1994).158 Tupling is very general; it

is parameterized as follows: Given a product of nonground terms z1 ··· zN , and

a set of variables {X1, ... , XL} (which may be any subset of vars(z1 ··· zN) as well

as fresh variables), the new definition formed by the tupling technique is then

tmp(X1, ... , XL)⊕= z1 ··· zN

where tmp is a novel function symbol; the name tmp and the order of its ar-

guments X1, ... , XL are chosen arbitrarily. The new definitions proposed in the

earlier examples of this chapter (23, 24, 27, and 28) were instances of a version

of the tupling technique known as the variable-elimination technique (defined

below).159

The variable-elimination technique is an instance of the tupling tech-

nique where (1) we use existing subproducts in the program, and (2) we pick

158Cohen, Simmons, et al. (2011) used a combination of tupling, fold, and unfold to give a general
recipe for deriving programs that compute the weighted intersection of logic programs. Using
this recipe, they derived several complex programs as the product of simpler programs (e.g., a
CKY is the intersection of a WCFG and a WFSA).

159This technique is sometimes called loop absorption (Pettorossi and Proietti, 1994). In NLP,
this form of variable elimination is known as a hook trick (Eisner and Satta, 1999a; Huang,
Zhang, et al., 2005; Gildea, 2011).
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the minimal subset of variables from the chosen subproduct for which the new

definition can correctly replace the subproduct. More formally, for a given

program p, the variable-elimination technique takes a rule R ∈ p. Suppose

that R is of the form x⊕=α µ β where α, µ, and β are sequence of subgoals.

If is commutative, then we may permute R’s subgoals when matching this

pattern. If any subset of µ’s variables does not appear in any of x , α, and β,

then those variables may be locally summed in a new definition—providing

a more efficient rule because it has fewer variables. The set of variables

{X1, ... , XL} = vars(µ) ∖ (vars(α) ∪ vars(β) ∪ vars(x)) is the minimal set of vari-

ables for the new definition to fold into this position of p successfully. The

remainder of the technique follows tupling.

We have already seen a number of examples of variable elimination in §7.1.

In particular, Examples 23–25, 27 and 28 use variable elimination to propose

new definitions that enable a speed-up. We highlight one of them below.

Example 31. We revisit Example 24 to see how it uses the variable elimination.

Recall that Example 24 sped up the rule

395 β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).

by transforming it into two rules where the variable Y is summed separately from K:

396 β(X,I,K) += tmp(I,J,X,Z) * β(Z,J,K).
397 tmp(I,J,X,Z) += γ(X,Y,Z) * β(Y,I,J).

We will show how the rule #397 is the output of variable elimination.160

160Below we padded the body with a 1 to match the (x⊕α µ β) pattern.
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β(X,I,K)︸ ︷︷ ︸
x

+= 1︸︷︷︸
α

∗ γ(X,Y,Z) * β(Y,I,J)︸ ︷︷ ︸
µ

∗ β(Z,J,K)︸ ︷︷ ︸
β

We named our new relation tmp and determined its arguments as follows:

{I, J, X, Z} = vars(γ(X,Y,Z) * β(Y,I,J)) ∖ (vars(1) ∪ vars(β(Z,J,K)) ∪ vars(β(X,I,K)))

We now see how the #397 is the output of the variable elimination technique. Note

that we have to subsequently fold #395 by our new rule to get #396 to complete

the example. Each definition introduction should be followed by fold to graft the

new definitions into the program.

Later, we will see that the speculation and left-corner transformations (§7.5)

are also ways to generate new definitions based on an existing program.
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7.4 Fold and Unfold Transformations

This section describes a pair of transformations called fold and unfold. This

pair of transformations has a long history in unweighted logic programming161.

They were generalized to the semiring-weighted logic programming (Eisner and

Blatz, 2007). At a high level, these transformations are analogous to applying

the semiring distributive property (Definition 17) in either the expanding (un-

fold) or factoring (fold) direction. The folding transform is essential for grafting

new definitions into the existing rules of a program and rewriting those defi-

nitions to be efficient self-supporting recursive definitions (as we have seen in

§7.1). We start with a basic version of the transformations (§7.4.1) and, then,

develop a generalized version (§7.4.2). The generalized transformations are

novel in the weighted setting. The generalized transformations themselves are

largely the same as in the unweighted setting. However, we had to overhaul

the correctness proofs in order to prove that these transformations preserve our

sum-over-derivations semantics (§4)—the existing theory for the unweighted

setting only considered the preservation of at least one derivation rather than all

derivations (Definition 31). As noted in the unweighted setting, the generalized

fold and unfold transformations are quite powerful, but they require careful

technical considerations to avoid mistakes.

161E.g., Tamaki and Sato (1984), Kawamura and Kanamori (1990), Bossi et al. (1992), Gergat-
soulis and Katzouraki (1994), Pettorossi and Proietti (1994), Roychoudhury et al. (1999).
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7.4.1 Basic Fold and Unfold

Unfold. At a high level, what the unfolding transformation p(s)
unfold−−→ p(t)

does is to replace a given rule r ∈ p(s) with versions of that rule S that correspond

to expanding a specific subgoal against the rules that define that subgoal’s value.

The result of the fold is a new program p(t) = p(s) ∖ {r} ∪ S.

Example 32. Below, we unfold the first subgoal (q) in #398:
398 p += q * t.
399

400 q += r.
401 q += s.

unfold(#398,1)−−−−−−−→


402 p += r * t.
403 p += s * t.
404 q += r.
405 q += s.

Because there are two rules #400 and #401 that define q, we get two variants

(#402 and #403) of #398 in the new program. In this example r = #398 and

S =
{
#402,#403

}
Below, we show the derivations for p and q.
p

q

r

t

p

q

s

t

q

r

q

s


unfold(#398,1)−−−−−−−→

{
p

r t

p

s t

q

r

q

s

}

Notice how #398 is replaced in the first derivation with #402 and how #398 is

replaced in the first derivation with #403. The two derivations of q are unchanged

because none of the rules that appear in them were altered.

Fold. Folding is the inverse of unfolding. At a high level, a folding trans-

formation p(s)
fold−→ p(t) replaces a collection of rules S ⊆ p(s) with a single rule r.

In other words, the result of the fold is a new program p(t) = p(s) ∖ S ∪ {r}.

Example 33. Continuing Example 32, we use fold to invert the unfold transforma-
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tion from Example 32. We simultaneously fold #406 by #408, and #407 by #409.
406 p += r * t.
407 p += s * t.
408 q += r.
409 q += s.

fold−→


410 p += q * t.
411

412 q += r.
413 q += s.

This replaces the set of rules S =
{
#406,#407

}
by the single rule r = #410. To

check that we folded correctly, verify that unfolding #410 gives the program on

the left (this is known as the reversibility test).

Definition 33. The basic unfold transformation takes
〈
p(s), r, j

〉
where p(s) is

a program, r is a rule (r ∈ p(s)), and j is an index of r’s body (0 ≤ j ≤ | body(r) |).

And produces a program p(t), which is given by the following procedure:

Algorithm 20 unfold: Apply the basic unfold transformation (Definition 33).

1. def unfold(p(s), r, j):
2.

(
x⊕= y[:j) yj y(j:]

)
← r

3. p(t) ← p(s) ∖ HrI ▷ New program with rule r removed
4. ▷ Add new rules by expanding subgoal yj in rule r with its defining rules in p(s)

5. p(t)[x]⊕= y[:j) p(s)[yj] y(j:]

6. return p(t)

Let S denote the set of rules added by the transformation. There is a one-to-one

alignment σ
t→s

: S → p(s); each rule in S maps to a distinct rule in p(s) that gave

rise to it. The inverse of this alignment is denoted σ
s→t

: p(s) → S.162

Definition 34. The basic fold transformation takes
〈
p(s),S, r

〉
where p(s) is

a program, S ⊆ p(s), and r is a new rule. And, produces a program p(t) =

162The following behaviors are inherited from p[·]. If subgoal j is a constant or input, then the
unfold is a no-op. If subgoal j is a built-in relation, then it may evaluate if it is sufficiently
instantiated. Recall from §3.1.2.3 that expanding a rule can lead to summing over a free
variable. That case is handled here thanks to the result-stream machinery developed in
§3.1.2.1.
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(p(s) ∖ S)∪ {r}. However, the fold is valid if and only if it passes the reversibility

test: ∃j : p(s) = unfold(p(t), r, j).163

Algorithm 21 fold: Apply the basic fold transformation (Definition 34).

def fold(p(s),S, r):
p(t) ← (p(s) ∖ S) ∪ {r}
assert ∃j : p(s) = unfold(p(t), r, j) ▷ Reversibility test
return p(t)

Notice that the new rule r must be carefully synthesized for this transforma-

tion method to be useful and pass the reversibility test.164 The reversibility test

was originally studied by Maher (1987).

Theorem 4. Suppose p(s)
unfold−−→ p(t) according to Definition 33, then p(s)

strong
≡ p(t).

Theorem 5. Suppose p(s)
fold−→ p(t) according to Definition 34, then p(s)

strong
≡ p(t).

Proofs of correctness in the unweighted setting are available in many works

(e.g., Maher (1987)). However, the weighted setting (first proposed in Eisner and

Blatz (2007)) lacks a formal proof of correctness for fold and unfold; we fill this

gap in the literature in §B.2. Furthermore, our theoretical results strengthen

Eisner and Blatz (2007)’s (informal) correctness claims by demonstrating strong

equivalence of fold and unfold, rather than (weak) equivalence.

7.4.2 Generalized Fold and Unfold

In this section, we generalize the basic unfold transformation (Definition 33)

to allow the rules used to expand the subgoal to come from a (possibly different)
163For this test, syntactic equality is sufficient.
164For a given r, we can search over S ⊆ p(s) to see if any of those folds pass the reversibility test.
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program p(d)
strong
≡ p(s).165 We call p(d) the auxiliary definitions. As we shall see

in Example 34, auxiliary definitions give us additional flexibility because we can

fruitfully mix and match semantically equivalent versions of a given program.

Example 34. Consider unfolding the geometric series p(0) to get p(1):

p(0) =

{
414 x += b.
415 x += x * a.

unfold(#415,1)
−−−−−−−−→ p(1) =

{
416 x += b.
417 x += b * a.
418 x += x * a * a. % two a’s

So far, so good. What if we unfold again? Frustratingly, unfold(p(1),#418, 1) gives

419 x += b.
420 x += b * a.
421 x += b * a * a.
422 x += b * a * a * a.
423 x += x * a * a * a * a. % four a’s

which has unrolled the recurrence 4 levels instead of 3 levels.166 Using generalized

unfold, unfold(p(1),#418, 1, p(0)) with p(0) as auxiliary definitions, gives

424 x += b.
425 x += b * a.
426 x += b * a * a.
427 x += x * a * a * a. % three a’s

which unrolls the recurrence to 3 levels.167

Generalized fold. We also consider a generalized fold transformation,

which relaxes the reversibility test in basic fold (Definition 34) to allow unfolding

against auxiliary definitions in its reversibility test. Specifically, the generalized

fold transformation modifies the reversibility test in Definition 34 from ∃j : p(s)=

unfold(p(t), r, j, p(t)) to ∃j : p(s)=unfold(p(t), r, j, p(d)). This added flexibility enhances

165Future work may want to explore other families of equivalence beyond strongly equivalent as
strong equivalence is clearly not necessary for correctness.

166Unfolding the bottom rule once more would unroll the recurrence up to 8 levels.
167Unfolding the bottom rule once more (against p(0)) would unroll the recurrence up to 4 levels.
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the power of our transformation system: Example 27 and Example 28 would not

be possible with only basic folds. We revisit Example 27 below.

Example 35. Recall Example 27, which computes the total weight (goal) of all

paths in a graph that start in a set start and end in a set stop. Suppose we start

with p(0) and unfold it to p(1):

p(0) =


428 goal += startpath(K) * stop(K).
429 startpath(K) += start(I) * path(I,K).
430 path(I,I) += 1.
431 path(I,K) += path(I,J) * edge(J,K).

unfold(#429,2)−−−−−−−→ p(1) =


432 goal += startpath(K) * stop(K).
433 startpath(K) += start(K).
434 startpath(K) += start(I) * path(I,J) * edge(J,K).
435 path(I,I) += 1.
436 path(I,K) += path(I,J) * edge(J,K).

Next, we use generalized folding to rewrite startpath more efficiently in terms of

itself rather than path. We recognize that S =
{
#434

}
can be replaced by

r = (startpath(K) += startpath(J) * edge(J,K))

This transformation folds #434 by #429. Since #429 is in p(0), this transformation

is a generalized fold. Specifically, the transformation fold 0

{#434}→r
gives

p(2) =


437 goal += startpath(K) * stop(K).
438 startpath(K) += start(K).
439 startpath(K) += startpath(J) * edge(J,K).
440 path(I,I) += 1.
441 path(I,K) += path(I,J) * edge(J,K).

We deactivate the path rules as they are no longer used by goal. The running time of

p(2) is O(N2) where N is the number of nodes in the graph, which is considerably

better than the O(N3) running time of the initial program p(0).

Warning! The generalized fold and unfold transformations require some technical

restrictions to be semantics-preserving. The definitions above are only suffi-
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cient to guarantee partial correctness—meaning that we can lose derivations,

but we cannot gain spurious derivations. To give a quick example, consider

Example 35. If instead of unfolding #429, we immediately folded #429 by itself,

we would arrive at the ill-founded definition: startpath(K) += startpath(K). In the

remainder of this section, we will develop sufficient conditions to ensure specific

fold and unfold transformations are semantics-preserving.

7.4.2.1 Formal Definitions

Generalized Unfold. Below, we generalize the basic unfold transforma-

tion (Definition 33) to allow auxiliary definitions (p(d), below) to be used.168

Definition 35. The generalized unfold transformation takes
〈
p(s), r, j, p(d)

〉
where p(s) is a program, r is a rule (r ∈ p(s)), j is an index of r’s body (0 ≤ j ≤

| body(r) |), and p(d) is a program (p(d)
strong
≡ p(s)). And produces a program p(t),

which is given by the following procedure.

Algorithm 22 unfold: Apply the generalized unfold transformation (Defini-
tion 35).

1. ▷ The pseudocode is similar to basic unfold (Algorithm 20). The difference is that we have
introduced an additional argument p(d), and we use p(d)[yj ] instead of p(s)[yj ] on line 22.6.

2. def unfold(p(s), r, j, p(d)):
3.

(
x⊕= y[:j) yj y(j:]

)
← r

4. p(t) ← p(s) ∖ HrI ▷ New program with rule r removed
5. ▷ Add new rules where subgoal yj in rule r with its defining rules in p(d)

6. p(t)[x]⊕= y[:j) p(d)[yj] y(j:]

7. return p(t)

168Pettorossi and Proietti (1994) have generalized unfold, but Roychoudhury et al. (1999) did not.
Thus, it was missing in Roychoudhury et al. (1999)’s safety framework, which we have based
ours on, and we will add it in §7.4.2.4.
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Let S denote the set of rules the transformation adds. There is a one-to-one

alignment σ
t→d

: S → p(s); each rule in S maps to a distinct rule in p(d) that gave

rise to it. The inverse of this alignment is σ
d→t

: p(d) → S.

Unlike basic unfolds (Definition 33), not all generalized unfolds are safe (cf.

Example 36); sufficient conditions are presented in Theorems 1 and 2. Notice

when p(d) = p(s), we recover basic unfold. We often write p(s)
unfold d,j

r→S−−−−−→ p(t) to

describe a specific unfolding relationship between p(s) and p(t). This provides

a convenient shorthand to reference S and r, which are functions of the tuple〈
p(s), r, j, p(d)

〉
. When we omit the definition index d, e.g., p(s)

unfold j
r→S−−−−−→ p(t), we take

d = s as a default value for the auxiliary definition argument.

Generalized Fold. Below, we generalize the basic fold transformation

(Definition 34) to allow auxiliary definitions to be used in its reversibility test.

Definition 36. The generalized fold transformation works as follows: Given〈
p(s), r,S, p(d)

〉
where r is a rule that replaces a subset of rules S ⊆ p(s) and

p(d)
strong
≡ p(s) are auxiliary definitions. The result is a program p(t) = (p(s) ∖ S) ∪

{r}. However, p(t) must satisfy the generalized reversibility test: ∃j: p(s) =

unfold(p(t), r, j, p(d)).

Algorithm 23 fold: Apply the generalized fold transformation (Definition 36).

def fold(p(s), r,S, p(d)):
p(t) ← (p(s) ∖ S) ∪ {r} ▷ Replace rules S by the rule r
assert ∃j: p(s) = unfold(p(t), r, j, p(d)) ▷ Generalized reversibility test
return p(t)

Unlike basic folds (Definition 34), not all generalized folds are safe (cf. Ex-

ample 25); sufficient conditions are presented in Theorems 1 and 3. Similar
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to our notation for unfold, we often write p(s)
fold d,j

S→r−−−−→ p(t). Notice that taking

p(d)=p(s) does not recover the basic fold. Specifically, the generalized reversibility

condition would not be the same because the basic fold would unfold with respect

to p(t), and the generalized fold would unfold with respect to p(d), which equals

p(s) rather than p(t).

7.4.2.2 Challenges

Unfortunately, not all generalized unfolds and folds are semantics-preserving.

We provide examples of each in this section.

Example 36 (Unsafe generalized unfold). We start with

p(s) =

{
442 p += q.
443 q += r.
444 r += 1.

p(d) =

{
445 p += 1.
446 q += r.
447 r += p.

Clearly, p(s) ≡ p(t) as they both have JpK = JqK = JrK = 1. Furthermore, p(s)
strong
≡ p(t)

as we can see that there is a value-preserving bijection between

p(s){·} =



p

q

r

1

q

r

1

r

1


and p(d){·} =



p

1

q

r

p

1

r

p

1


However, unfolding #443 against p(d) gives the following incorrect program:

p(t) =

{
448 p += q.
449 q += p.
450 r += 1.

p(t)J·K =

{
451 p += 0.
452 q += 0.
453 r += 1.

p(t){·} =


r

1


Inspecting the rules, we see an ill-founded cycle between #448 and #449 that

causes its valuation to differ and derivation set to shrink in size.
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Example 37 (Unsafe generalized fold). We start with169

p(0) =

{
454 p += q.
455 q += 1.

p(0){·} =


q

1

p

q

1


Since JpK = JqK = 1, we might try to replace all instances of q on the right-

hand side with p. So we define the following new program p(∗) by folding with

S =
{
#454

}
, r = (p += p), j = 0, and definitions p(d) = p(0). The output is the

following (partially correct) program.

p(∗) =

{
456 p += p.
457 q += 1.

p(∗){·} =


q

1


Although, the generalized reversibility condition is satisfied (unfold(p(0),#456, 1, p(0)) =

p(0)), this transformation has lost the derivation of p. At a high level, what has

happened is that we have created an ill-founded definition for p; this buggy

definition is cyclical without any base cases.

7.4.2.3 What Causes Partial Correctness?

To better understand the fold and unfold transformations, we will construct

their derivation mappings. Recall from Definition 31 that the derivation map-

ping is a function ϕ
s→t

that maps derivations from p(s){·} into derivations from

p(t){·}. We require that ϕ
s→t

is a value-preserving bijection from the transforma-

tion p(s) −→ p(t) to be strongly semantics-preserving. What is interesting about

the generalized fold/unfold case is the auxiliary definitions’ role in construct-

169This is a Dyna adaptation of Example 4.1 from Pettorossi and Proietti (1994).
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ing these mappings. Roughly speaking, the derivation mappings ϕ
s→t

will pivot

through p(d){·} using ϕ
s→d

and ϕ
d→s

. The challenge of pivoting is that it can result

in infinite recursion, corresponding to (possibly) losing a derivation (i.e., partial

correctness). We will use what we learn from the derivation mapping’s failure

modes to develop sufficient conditions for when the transform is safe (i.e., when

the mapping is a value-preserving bijection).

We direct the reader to Algorithm 24 and Algorithm 25, which provide pseu-

docode for the derivation mappings of the generalized unfold and fold transforma-

tions. We wish to emphasize two things: (1) the derivation mappings are never

run as part of the transformations—they are just used in our analysis of the

transformations, and (2) neither Algorithm 24 or Algorithm 25 are guaranteed

to define a value-preserving bijection—in fact, they are not even guaranteed to

be functions, as they do not terminate for all inputs.

To see why the transformations go awry, we will study how the derivation

mapping chokes on the following example:

Example 38. Continuing with the unsafe fold example (Example 37). Recall:

r = (p += p)

S = {p += q}
p(d) = p(s)

p(s){·} =


q

1

p

q

1

 δ(s) =


p

q

1



And we saw that the derivation δ(s) is lost in this transformation. Consider

the evaluation of ϕ
s→t

(
δ(s)
)

through Algorithm 25. Since the top rule of δ(s) is
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S(ℓ) = (p += q) and S(ℓ) ∈ S, we fall in the bottom case (line 25.7).

ϕ
s→t


p

q

1

 =

p

ϕ
s→t

(
u−1

(
q

1

))

The invocation of u−1 returns170
p

q

1

 = u−1

(
q

1

)

Now, when we return to line 25.7, we observe the problem:

ϕ
s→t


p

q

1

 =

p

ϕ
s→t

(
u−1

(
q

1

)) =

p

ϕ
s→t


p

q

1

 =

p

p

p

p

...

This recurrence never terminates as ϕ
s→t

immediately calls itself with the same

argument. It tries to build an infinitely tall tree and never succeeds because

it does not hit base cases. Thus, the derivation δ(s) is lost by the derivation

mapping—meaning that our procedure for ϕ
s→t

cannot find any corresponding δ(t)

in p(t){·}. This means that we have failed to define a value-preserving bijection

( ϕ
s→t

is not even a function). Therefore, we cannot promise safety for this instance

of generalized fold, nor should we!

170To see why, we trace the steps of u−1. Since p(d)=p(s) the ϕ
s→t

(and ϕ
t→s

) transformations are

no-ops. The folder rule D(ℓ) = (p += q) (#454). So when we reconstruct, we get yj = p. We also
have the following alignment: σ

d→t
(D(ℓ)) = (p += q).
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The lesson learned from this example is that for the derivation maps (Al-

gorithm 24 and Algorithm 25) to be correct, we need to ensure that cyclical

recursion—like we just saw in Example 38—will not occur. We will use the

nontermination of ϕ
s→t

as a diagnostic for when generalized fold/unfold goes

awry. When ϕ
s→t

(δ) (Algorithm 24 and Algorithm 25) fails to terminate on some

δ ∈ p(s){·}, the problematic δ corresponds to a derivation that might be lost. Thus,

to ensure correctness, we need to reject transformations for which ϕ
s→t

might not

always terminate. More formally, we have the following theorems, which are

proven in §B.2:

Theorem 2. Given p(s)
unfold d,j

r→S−−−−−→ p(t) and p(s)
strong
≡ p(d). Suppose the function

ϕ
s→t

(
δ(s)
)

, as specified in Algorithm 24, terminates for all δ(s) ∈ p(s){·}. Then, ϕ
s→t

is

a value-preserving bijection between p(s){·} and p(t){·}. Furthermore, p(s)
strong
≡ p(t).

Theorem 3. Given p(s)
fold d,j

S→r−−−−→ p(t) and p(s)
strong
≡ p(d). Suppose the function ϕ

s→t

(
δ(s)
)

,

as specified in Algorithm 25, terminates for all δ(s) ∈ p(s){·}. Then, ϕ
s→t

is a value-

preserving bijection between p(s){·} and p(t){·}. Furthermore, p(s)
strong
≡ p(t).

The termination condition manifests in our proof of correctness (§B.2); termi-

nation ensures that a well-founded ordering exists for our inductive proofs that

establish value-preserving bijectivity. Verifying that these derivation mappings

always terminate can be difficult. We describe a relatively simple system in

§7.4.2.4 for ensuring termination that is based on static analysis.
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Algorithm 24 Derivation mapping for p(s)
unfold d,j

r→S−−−−−→ p(t).

1. ▷ The pseudocode assumes that rules are distinct. This can be arranged by marking each rule with an identifier that
is checked by equality tests. When a rule is copied from one program to another, its identifier is unchanged. When a
rule is created, it is assigned a unique identifier.

2. ▷ We use derivation mappings ϕ
s→d

and ϕ
d→s

that establish p(s)
strong
≡ p(d). They must be fixed for all δ(s).

3. ▷ In the code below, α, µ, and β are sequences.

4. def ϕ
s→t

(
δ(s)

)
:

5. case constant or builtin: return δ(s)

6. case
y1 ···

yK : return ϕ
s→t

(
y1

)
··· ϕ

s→t

(
yK

)

7. case


x

µ

 and its top rule ∈ p(t): return

x

ϕ
s→t

(
µ

)

8. case


x

βyjα

 and its top rule /∈ p(t):

9. return
x

ϕ
s→t

(
α

)
ϕ

s→t

(
u

(
yj

))
ϕ

s→t

(
β

)
▷ The top rule of the transformed derivation is

given by the 2nd element of the pair returned
from u (notation abuse). The call to u replaces
the yj subtree with a value-equivalent deriva-
tion in p(s){·} (the 1st element of the pair),
which is then recursively transformed.

10. ▷ Pivoting function: Returns pair of a value-equivalent derivation and the new top-level rule in p(t). See
Lemma 2 for a formal statement and proof.

11. def u
(

yj

)
: ▷ Note: This function references ⟨s, t, d⟩ from the calling context.

12. δ
(s)
1 ←

yj

; δ
(d)
1 ← ϕ

s→d

(
δ
(s)
1

)
▷ Convert subtree into p(d){·}.

13.


yj

µ

← δ
(d)
1 ; δ

(d)
2 ←

µ

▷ Remove the intermediate item yj

14. D(ℓ) ← top rule of δ(d)1

15. T(ℓ) ← σ
d→t

(D(ℓ)) ▷ Use the alignment to retrieve the new top rule

16. δ
(s)
2 ← ϕ

d→s

(
δ
(d)
2

)
▷ Convert back into p(s){·}

17. return
〈
δ
(s)
2 ,T(ℓ)

〉
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Algorithm 25 Derivation mapping for p(s)
fold d,j

S→r−−−−→ p(t).

1. ▷ The comments at the top of Algorithm 24 apply here as well.

2. def ϕ
s→t

(
δ(s)

)
:

3. case constant or builtin: return δ(s)

4. case
y1 ···

yK : return ϕ
s→t

(
y1

)
··· ϕ

s→t

(
yK

)

5. case


x

µ

 and its top rule ∈ p(t): return

x

ϕ
s→t

(
µ

)

6. case


x

βµα

 and its top rule /∈ p(t):

7. return
x

ϕ
s→t

(
α

)
ϕ

s→t

(
u−1

(
µ

))
ϕ

s→t

(
β

)
▷ The rule passed to u−1 is S(ℓ) the top rule of
δ(s) (abusing notation), and the alignment (σ)
used in u−1 is from the fold transformation’s
generalized reversibility test.

8. ▷ Inverse of the pivoting functions u. See Lemma 3 for formal guarantees.

9. def u−1
(
δ
(s)
2 ,T(ℓ)

)
: ▷ Note: With apologies, the argument name T(ℓ) was chosen to match those of u.

(It is not a mistake that we pass in a rule from p(s) for a variable named T(ℓ)

when we call it from the derivation mapping for fold.)

10. δ
(d)
2 ← ϕ

s→d

(
δ
(s)
2

)
11. D(ℓ) ← σ

t→d
(T(ℓ))

12. yj ← reconstruct
(
T(ℓ),D(ℓ)

)
13. δ

(d)
1 ←


yj

µ

 ▷ The rule added is an instantiation of D(ℓ)

14. δ
(s)
1 ← ϕ

d→s

(
δ
(d)
1

)
15. return δ

(s)
1

16. ▷ Reconstruct the intermediate item that would have been erased by p(s)
unfold d,j

r→S−−−−−−−→ p(t).
17. def reconstruct(T(ℓ),D(ℓ)):
18.

(
x′⊕=α′ y′ β′)← r

19. (y′′⊕=µ′′)← D(ℓ)

20. θ ← cover(
(
x′⊕=α′ µ′′ β′),T(ℓ)) ▷ Solve T(ℓ) = θ((x′ ⊕=α′ µ′′ β′))

21. return θ(y′)
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7.4.2.4 Practical Sufficient Conditions for Correctness

This section will identify a practical way to test for the impractical sufficient

conditions we identified in the theorems of §7.4.2.3. What will result is a system

that can guarantee termination of ϕ
s→t

(δ) for all derivations δ (where ϕ
s→t

is either

Algorithm 24 or Algorithm 25). We will use a simple abstract interpretation

technique to ensure that each recursive call made in ϕ
s→t

descends in a certain

well-founded order—ensuring that the recursive calls eventually hit a base case.

Our strategy for avoiding unsafe fold and unfold transformations is adapted

from Roychoudhury et al. (1999). At a high level, the strategy keeps track of

the provenance of each rule (i.e., how each rule was derived using previous

transformations). The rule provenance data will give rise to additional con-

straints on folding and unfolding actions between rules of different programs

to prevent circular definition cycles. These are merely sufficient conditions but

general enough to cover most use cases. A condition worth highlighting is that

p(s) and p(d) must be related through a series of transformations; they cannot be

unrelated programs.

We start with an initial program p(0). The initial program’s derivations each

have a finite size we can use as a well-founded ordering for induction. As we

derive new programs from the initial program through transformations, we

can use a common relative size with respect to p(0) to perform induction on

derivations from the later programs. The relative size enables the comparison of

derivations across programs (such as the derivations resulting from pivoting in

175



u and u−1). However, we need to ensure that the relative-size measure remains

accurate and well-founded in the new program after each fold or unfold.

Modeling Decisions. To make static analysis tractable, we make the

following modeling decisions:

1 For any generalized fold or unfold, the programs p(s), p(d), and p(t) are related

through a series of fold or unfold transformations to an initial program p(0).

2 The relative size of each derivation will be (approximately) preserved by

each transformation. We will define a function Ψ, such that Ψ
(
δ(s)
)

=

Ψ
(
δ(t)
)

for all
〈
δ(s), δ(t)

〉
in the bijection between p(s){·} and p(t){·}.

3 The relative size of a derivation δ ∈ p{·} is an additive function Ψ that is

parameterized by values associated with each of the program’s rules.

We now make 3 more precise; we define a derivation’s measure.

Definition 37. Suppose a given program p assigns a rule measure ψ(R) to each

R ∈ p.171 The derivation measure Ψ(δ) for δ ∈ p{·} is

Ψ(δ)
def
=


0 if δ is a constant or builtin
Ψ(δ1) + ··· +Ψ(δK) if δ is a product δ1 ··· δK

ψ(R) + Ψ(body(δ)) if δ is a derivation with top rule R

(7.1)

We will carefully choose the rule measure parameters ( 3 ) so that 2 holds.

After illustrating the following example, we will give the precise recipe.

171We assume, for simplicity, that rule measures are integer-valued. However, it is possible to
generalize to certain well-ordered commutative groups (Roychoudhury et al., 1999, Def. 1).
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Example 39. Consider the following unfold with rule measures provided to the

left of each rule:
458 γ0: p += q * t.
459

460 γ1: q += r.
461 γ2: q += s.

unfold−−→


462 γ0 + γ1: p += r * t.
463 γ0 + γ2: p += s * t.
464 γ1: q += r.
465 γ2: q += s.

We have associated the variables γ0, γ1, and γ2 with the 3 rules of the program on

the left. The rule measures on the right were chosen to preserve the derivation

measure ( 2 ). Consider the derivations of 2 derivations for p in each program:
p

q

r

t

p

q

s

t

 and

 p

r t

p

s t


We verify that the derivation measures are preserved:

Ψ


p

q

r

t

 = γ0 + γ1 = Ψ

 p

r t



Ψ


p

q

s

t

 = γ0 + γ1 = Ψ

 p

s t


Intuitively, the scheme works because the rules arising from the unfold count for

two rules each time they appear in a derivation on the right.

We now consider fold, which works in the opposite direction. Here the measure

for each rule appears to its left.
466 γ0: q += r.
467 γ1: q += s.
468 γ2: p += r * t.
469 γ3: p += s * t.

fold−→


470 γ0: q += r
471 γ1: q += s
472

473 {γ3 − γ1, γ2 − γ0}: p += q * t.

The measure of #473 is interesting: we are uncertain about whether it should be
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γ3−γ1 or γ2−γ0. So, we represent the measure of the new rule using an uncertainty

set: {γ3 − γ1, γ2 − γ0}. We do this because we have lost the information about

which of the two rules was folded. Now, we can conservatively estimate the size

as an uncertainty set for each pair of derivations in the bijection between

 p

r t

p

s t

 and


p

q

r

t

p

q

s

t


We verify that the derivation measures are preserved (i.e., they are contained

within the uncertainty sets):

Ψ

 p

r t

 = {γ2} ⊆ {γ3 − γ1 + γ0, γ2} = {γ3 − γ1, γ2 − γ0}+ {γ0} = Ψ


p

q

r

t



Ψ

 p

s t

 = {γ3} ⊆ {γ3, γ2 − γ0 + γ1} = {γ3 − γ1, γ2 − γ0}+ {γ1} = Ψ


p

q

s

t


We make 1 more precise by defining a transformation sequence:

Definition 38. A transformation sequence p(0), ... , p(T ) is defined recursively.

Base case (T = 0): We allow p(0) to be any program. We call p(0) the reference

program. Recursive case (T ≥ 1): Suppose p(0), ... , p(T−1) is a transformation

sequence, then p(0), ... , p(T−1), p(T ) is a transformation sequence as long as p(T ) =

fold d,j
S→r(p

(s)) or p(T ) = unfold d,j
r→S(p

(s)) where p(s), p(d) are earlier programs in the

sequence, the new transformation is well-formed (⟨S, j, r⟩ are valid arguments),

and the new transformation is safe.
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Definition 39 (Rule measure updates). For each program in a transformation

sequence p(t), we define a rule measure ψt(R) for each of its rules R ∈ p(t). The

value of the rule measure will generally be an uncertainty set. The rule measure

is defined inductively.

Base case: For each rule R ∈ p(0), we take its measure ψ0(R) > 0 as an input

parameter.172

Recursive case: Suppose the last program in our sequence is p(t). Then it must

have been derived from one of the following cases:

• Case p(t) = unfold d,j
r→S(p

(s)): Here, we have an alignment between each new

rule T(ℓ) ∈ p(t) and some D(ℓ) ∈ p(d). That alignment is
{〈

D(ℓ),T(ℓ)
〉}L

ℓ=1
=

σ
d→t

. The rule measures for each new rule T(ℓ) is then

ψt

(
T(ℓ)

)
= ψs(r) + ψd

(
D(ℓ)

)
for ℓ ∈ [1:L]

• Case p(t) = fold d,j
S→r(p

(s)): Let r be the new rule that results from folding

S =
{
S(ℓ)
}L
ℓ=1

by the definitions
{
D(ℓ)

}L
ℓ=1

. Then, r has the following rule

measure173,174

ψt(r) =
L⋃

ℓ=1

(
ψs

(
S(ℓ)
)
− ψd

(
D(ℓ)

))

172The choice of ψ0(R) = 1 for all R is fine; however, a clever choice may make certain transfor-
mations available and others not. We will use a symbolic system to infer a value for the initial
measure that designates a transformation as safe if such a value exists.

173The alignment ℓ that we are using here is given by σ of the alignment of the unfold transforma-
tion that is used in the generalized reversibility test.

174Notice that when we fold multiple rules | S | > 1, we might introduce approximation since
multiple uncertainty sets are merged into ψt(r).
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In both recursive cases, any unchanged rule R ∈
(
p(t) ∩ p(s)

)
copies its ψ from p(s).

The rule measures for rules in p(s) and p(d) are defined inductively.

Using relative size to ensure termination. We will devise a simple test

that ensures each recursive call of ϕ
s→t

descends (i.e., decreases the relative size).

We will consider the fold and unfold cases separately.

Consider the case of fold. In this case, we will have an alignment of the form

{〈
S(ℓ),D(ℓ)

〉}L
ℓ=1

=
{〈(

x(ℓ)⊕=α(ℓ) µ(ℓ) β(ℓ)
)
,
(
y′(ℓ)⊕=µ′(ℓ))〉}L

ℓ=1

We now inspect Algorithm 25’s recursive calls. Since the other cases are straight-

forward, we will focus on line 25.7. Below, we drop the ℓ annotations to avoid

notational clutter. In this case, we make the recursive call

ϕ
s→t

(
δ(s)
)
= ϕ

s→t

 x

βµα

 =

x

ϕ
s→t

(
α

)
ϕ

s→t

(
u−1

(
µ

))
ϕ

s→t

(
β

)

The tricky thing about these recursive calls is that we need to make sure that

the recursive call to ϕ
s→t

(
u−1

(
µ

))
will not end up calling ϕ

s→t

(
δ(s)
)

again. The

way that we will operationalize this quest is to use the derivation measure

that we developed earlier in this section. Assuming that each derivation has

equal measure ( 2 ) means that we can focus our attention on proving that

Ψ
(
δ(s)
)
> Ψ

(
u−1

(
µ

))
or, equivalently, Ψ

(
δ(s)
)
− Ψ

(
u−1

(
µ

))
> 0. If we

can do that, there is no way that the ϕ
s→t

program could recurse forever: each

step decreases by some nonzero positive integer amount, and the derivation

measure is ≥ 0. It is straightforward to verify that the sibling calls, ϕ
s→t

(
α

)
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and ϕ
s→t

(
β

)
, are descending because they are subtrees of δ(s).

We will now derive the test. First, we expand the derivation measure of δ(s)

by Definition 37:

Ψ
(
δ(s)
)
= Ψ

 x

βµα

 = ψs(S) + Ψ

(
α

)
+Ψ

(
µ

)
+Ψ

(
β

)

Recall from Algorithm 25 that

u−1

(
µ

)
= ϕ

d→s


y

ϕ
s→d

(
µ

)


where the rule D = (y⊕=µ) is an instantiation of a rule in p(d). Since this

operation is measure-preserving (by assumption), we know that the measure of

the new derivation is Ψ

(
u−1

(
µ

))
= ψd(D) + Ψ

(
µ

)
.

Now, we can put these pieces together:

Ψ
(
δ(s)
)
= ψs(S) + Ψ

(
α

)
+Ψ

(
µ

)
+Ψ

(
β

)

= ψs(S) + Ψ

(
α

)
+

(
Ψ

(
u−1

(
µ

))
− ψd(D)

)
+Ψ

(
β

)

Ψ
(
δ(s)
)
−Ψ

(
u−1

(
µ

))
= ψs(S) + Ψ

(
α

)
− ψd(D) + Ψ

(
β

)

Thus, we have descent if the following holds for all possible siblings α and β
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and all possible measures in the uncertainty set:175,176

(ψs(S)− ψd(D)) + Ψ

(
α

)
+Ψ

(
β

)
> 0

In practice, we replace Ψ

(
α

)
and Ψ

(
β

)
with estimates Ψ̂(α) and Ψ̂(β) that

only depend on the top of the derivation.177 These estimates must satisfy

Ψ̂(x) ≤ min
δ∈p(s){x}

Ψ(δ) for all x ∈ H

Notice that measure preservation means that we can use any program’s deriva-

tion set for the base of the minimization. Thus, Ψ̂ can be estimated from the

initial program p(0), which has the additional benefit that its derivation measure

has the highest fidelity.178 We describe possible estimators in Definition 40.

For the case of the unfold transformation, we arrive through a similar argu-

ment at the following condition:179

ψs(S) + ψd(D) + Ψ

(
α

)
+Ψ

(
β

)
> 0

Notice that ψs(S) + ψd(D) need not be positive.

Lastly, we must ensure the entire provenance chain of p(t) is safe. This means

that as we crawl up the sequence of prior fold and unfold transformations, we need

to check that each is safe and they derive from a common p(0).

175When x is an uncertainty set, the stipulation x > 0 is shorthand for ∀xi ∈ x : xi > 0.
176This condition is equivalent to that of Roychoudhury et al. (1999). However, we have arrived

at it through different arguments.
177Notice that our choice to use the relative size of a derivation rather than relative height pays

off here because the siblings in the derivation can provide some slack for the condition.
178Its uncertainty sets ought to be singletons.
179This condition was missing in Roychoudhury et al. (1999) since they had not considered

generalized unfold.
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Definition 40. The following are possible estimators for the minimum deriva-

tion measure of an item.

• The simplest estimator is Ψ̂(·) = 0.

• A simple estimator is

Ψ̂(x) def
=


0 if x is a constant, builtin, or input
Ψ̂(x1) + ··· + Ψ̂(xK) if x is a product x1 ··· xK

1 otherwise

• A more precise Ψ̂ can be expressed through the following system of lin-

ear inequalities that are a sufficient characterization of the set of feasible

estimators:180



Ψ̂(·) ≥ 0

for x in constants, builtins, or inputs : Ψ̂(x) ≤ 0

for R ∈ p(0) :
(x⊕= y1 ··· yK)← R

Ψ̂(x) ≤ ψ0(R) + Ψ̂(y1) + ··· + Ψ̂(yK)

For R ∈ p(0), ψ0(R) should be a singleton set; thus, we can treat it like a

scalar in these inequalities.

We summarize the complete system in Algorithm 26.

Theorem 1 (Correctness of Algorithm 26). Let p(0), p(1), ... , p(t) be a (measure-

safe) transformation sequence. Then, we can assess the safety of a candidate fold

or unfold transformation, p(t) −→ p(?), using measure_safe
(
p(?)
)
. If it is true, then the

transformation is safe.
180For efficiency, we might coarsen the program, e.g., by a maximum depth, as we did in §6.1.
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Proof Sketch. The measure safety test (Algorithm 26) ensures that the recursive

procedures for derivation mappings (Algorithm 24 and Algorithm 25) always

terminate. The method measure_safe
(
p(?)
)

will only return true when the recursive

calls provably descend safely under the candidate fold or unfold. The argument for

why this is the case was detailed earlier in this section. Therefore, the candidate

transformation must be safe by Theorem 2 and Theorem 3. ■

Summary. This section has provided an effective safety test for the

weighted setting based on prior work by Roychoudhury et al. (1999) for the

unweighted setting. We have found that this system provides excellent recall

when measure_safe leverages a constraint solver.181 Not requiring an initial rule

measure specification makes the overall system much more practical.

181We have found the complicated stratified counters in Roychoudhury et al. (1999) to be
unnecessary thanks to the constraint solver.
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Algorithm 26 Fold–unfold transformation sequence safety test. We assume an
initial reference program p(0) with rule measure ψ0(·) as input.

1. Ψ̂(·)← {one of the estimators in Definition 40}

2. def ψt(R):
3. case p(t) = p(0): return ψ0(R)

4. case p(t) = fold d,j
S→r(p

(s)) with alignment σ:
5. if R = r :
6. return

⋃
⟨S,D⟩∈σ

(ψs(S)− ψd(D))

7. else
8. return ψs(R) ▷ Copy the unchanged rule

9. case p(t) = unfold d,j
r→S(p

(s)) with alignment σ:
10. if R ∈ σ

t→d
:

11. return ψs(r) + ψd

(
σ

t→d
(R)

)
12. else
13. return ψs(R) ▷ Copy the unchanged rules

14. def φ(t):
15. case p(t) = p(0): return true

16. case p(t) = fold d,j
S→r(p

(s)) with alignment σ:
17. ▷ In the code below, S is of the form (x⊕=α µ β) where α, µ, and β are deter-

mined by how S was folded.

18. return φ(s) ∧ φ(d) ∧
∧

⟨S,D⟩∈σ

(
ψs(S)− ψd(D) + Ψ̂(α) + Ψ̂(β) > 0

)
19. case p(t) = unfold d,j

r→S(p
(s)) with alignment σ:

20.

(
x⊕=α yj β

)
← r ▷ Here α, yj , and β are determined by how r was unfolded.

21. return φ(s) ∧ φ(d) ∧
∧

⟨D,T⟩∈σ

(
ψs(S) + ψd(D) + Ψ̂(α) + Ψ̂(β) > 0

)

22. def measure_safe(p(t)):
23. ▷ For best results, use a constraint solver to find values for {γR}R∈p(0) that satisfy

the proposition φ(t). Recall that each γR must be > 0 and an integer. Our imple-
mentation uses the popular solver (Moura and Bjørner, 2008), but we note
that any integer linear solver would suffice.

24. ▷ (For faster results, we can check the feasibility of φ(t) using γR = 1 for all R ∈
p(0).)

25. ▷ (It is always ok to return false, e.g., if we want to set a timeout on the SMT
solver.)

26. return true if φ(t) is satisfiable else false
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7.5 Hoisting Transformations

This section gives two related transformations: the speculation transforma-

tion (Eisner and Blatz, 2007) and the left-corner transformations (Rosenkrantz

and Lewis, 1970; Johnson, 1998; Johnson and Roark, 2000). Our left-corner

transformation generalizes the well-known left-corner transformation for context-

free grammars to Dyna programs.182 We find an interesting connection between

the left-corner and speculation transformations: both transformations “hoist” a

subgoal up the tree, but the left-corner transformation additionally transposes

the structure of each derivation—replacing left recursion with right recursion.

7.5.1 Speculation Transformation

The speculation transformation was first introduced in Eisner and Blatz

(2007). Our presentation will differ from theirs because we will describe it in

terms of how it transforms derivations.

Example 40. Consider again the CKY program (Example 6).183

474 p(X,I,K) += p(Y,I,J) * p(Z,J,K) * r(X,Y,Z).
475 p(X,I,K) += p(Y,I,K) * r(X,Y).
476 p(X,I,K) += w(Y,I,K) * r(X,Y).

This program has an inefficiency: it repeats the same unary-chain closure for

all spans ⟨I, K⟩. Our use of speculation will refactor the program so that unary

chain closures may be precomputed (independently of the sentence) and reused at

182The left-corner transformation eliminates left recursion in context-free grammars, which
makes them amenable to specialized top-down parsing algorithms.

183The following example is adapted from Eisner and Blatz (2007).
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each span. This trick—attributed to Stolcke (1995)—is standard in probabilistic

parsing. The final program is as follows:

477 u(X,X’) += u(Y,X’) * r(X,Y).
478 u(X,X’) += r(X,X’).
479 p(X,I,K) += p’(X’,I,K) * u(X,X’).
480 p(X,I,K) += p’(X,I,K).
481 p’(X,I,K) += p(Y,I,J) * p(Z,J,K) * r(X,Y,Z).
482 p’(X,I,K) += w(Y,I,K) * r(X,Y).

But how were we able to arrive at it? Below is a derivation of the original program

that contains a long chain of #475 all with I=3, K=5 ( highlighted ):

p(np,3,8)

r(np,Yn,pp)p(pp,5,8)p(Yn,3,5)

r(Yn,Yn−1)p(Yn−1,3,5)

p(Y3,3,5)

r(Y3,Y2)p(Y2,3,5)

r(Y2,Y1)p(Y1,3,5)

r(Y1,det,n)p(n,4,5)p(det,3,4)

···

✂

Our transformed program will use a slashed item184 p(Yn,3,5)/p(Y1,3,5) that com-

putes the total weight of the intermediate chains—specifically, those that start at

p(Y1,3,5), end at p(Yn,3,5), and go through a subset of rules (in this case
{
#475

}
).185

These different chains will correspond to different derivations of the slashed item.

We can think of the new item as abstracting away the chain from the specific

starting point p(Y1,3,5). We can commit to a specific starting point of the form

p(Y1,3,5) later (i.e., higher up in the derivation tree) using a recovery rule, such as

184There is nothing special about the use of / here—it is not a special operator; it is just a name
for the new item that is meant to suggest that p(Yn,3,5) = p(Y1,3,5) * p(Yn,3,5)/p(Y1,3,5)
as it would if / meant division under real arithmetic.

185The specific subset of rules is a parameter of the transformation.
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p(Yn,3,5) += p̃(Y1,3,5) * p(Yn,3,5)/p(Y1,3,5). For technical reasons, we rename the

bottom element of the chain apart from its original by marking it with ·̃ (in this

case, p̃(Y1,3,5)). Our transformed derivation looks as follows.
p(np,3,8)

r(np,Yn,pp)p(pp,5,8)p(Yn,3,5)

p(Yn,3,5)/p(Y1,3,5)

r(Yn,Yn−1)p(Yn−1,3,5)/p(Y1,3,5)

p(Y3,3,5)/p(Y1,3,5)

r(Y3,Y2)p(Y2,3,5)/p(Y1,3,5)

r(Y2,Y1)p(Y1,3,5)/p(Y1,3,5)

1

p̃ (Y1,3,5)

r(Y1,det,n)p(n,4,5)p(det,3,4)

···

In the diagram, we can see that the chain has been stashed into a derivation of the

slashed item. That subderivation turns out not to depend on the specific values

for the span ⟨3, 5⟩—meaning that it can be reused by different spans and leads to

a runtime improvement after we apply abbreviation (§6.2.3). The subderivations

represented as generic triangles will be transformed recursively.

In the speculation notation, our transformed program is

483 p(X,I,K) / p(X’,I’,K’) += p(Y,I,K) / p(X’,I’,K’) * r(X,Y).
484 p(X’,I’,K’) / p(X’,I’,K’).
485 p(X,I,K) += p̃(X’,I,K) * p(X,I,K) / p(X’,I’,K’).
486 p̃(X,I,K) += p(Y,I,J) * p(Z,J,K) * r(X,Y,Z).
487 p̃(X,I,K) += w(Y,I,K) * r(X,Y).

Program specialization (§6.2) recognizes that I=I’ and K=K’. Additionally, it

recognizes that I, I’, K, and K’ are always free in the slashed items so they can be

dropped. So after specialization, we have the final program from earlier.

The speculation transformation is parameterized by σ ⊆ p and a nonground

term z. Let δ ∈ p{·} be an arbitrary derivation tree of a program p. We may
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represent δ schematically as a derivation of the form on the left. The speculation

transform will transform δ into a derivation of the form on the right.

x

β(n)y(n)

β(n−1)

y(2)

β(1)y(1)

β(0)z

···

=⇒

x

x/z

β(n)y(n)/z

β(n−1)

y(2)/z

β(1)y(1)/z

β(0)z/z

1

z̃

···

The schematic above exposes a spine of the derivation: the (maximal length)

path x⇝ z along the left edge of the derivation that uses only some designated

subset of rules σ and ends at an item matching the nonground term z .186 As

we can see with the derivation on the right, the speculation transformation

has dragged up (hoisted) the subderivation rooted at z leaving behind a trace

x/z ⇝ z/z along the spine x ⇝ z with a 1 in the original position of the hoisted

subderivation. We call each ·/· item a slashed item. The new derivation still

has root x , but now z attaches at the top with a derivation of the x item without

z at the base of its spine. Each subtree rooted at β(i) remains a derivation of

the same β(i) items, but the internals of each subtree may change because the

transformation is applied recursively to it.

Recall from Example 40 that the marking z̃ on the z item means that the item

186Thus, if z appears multiple times, we take the bottom-most occurrence.
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is the bottom of a chain. We will use this marking for an additional purpose. In p,

it might also be possible to derive x in other ways using the rules in σ such that

the base of the spine does not match z . We want to keep these derivations intact,

so we create a route marked with ·̃ that allows the derivations built with rules

in σ that do not have z along their spine to continue contributing values to x .

These marked items will contribute to the value of x using a rule (x⊕= x̃), but

notice that we need to ensure that x /∈ z because the x̃ is supposed to sum up

the derivations of x that either do not have z on their spine—either because (a)

they do not go through σ, or (b) they do go through σ, but they do not end in

a z item. If x is a z item, it reaches z with a zero-length spine. To drop these

unwarranted contributions, Eisner and Blatz (2007) add a constraint that x /∈ z.

x

x̃

β(n)ỹ(n)

β(n−1)

ỹ(2)

β(1)ỹ(1)

β(0)z̃

1[x /∈ z]

···

The last case we need to consider is when multiple z items might appear

along the spine. If we do not distinguish this case, we could overcount, as there

are many places where the z̃ item will try to attach itself. We use the solution

proposed by Eisner and Blatz (2007): hoist the bottom-most z item as high as
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it can go along the spine (i.e., breaking the ambiguity in where to attach it by

attaching at the highest point along the spine).

Definition 41. Given a program p, the speculation transformation p′ =

speculation(p, z,σ) is parameterized by a nonground term z representing a set of

items to slash out, and σ is a set of rule indices to slash from. For simplicity, the

transformation given below requires that (1) p does not have inputs,187 (2) the

variables in z cannot appear in p, (3) for each i ∈ σ, (x⊕= y1 ··· yK) = pi :

(a) K > 0, (b) y1 is not a constant or builtin,188 (c) y1 ⊆ z or y1 ∩ z = ∅.189

Algorithm 27 speculation: Apply the speculation transformation (Definition 41).
1. def speculation(p, z,σ):
2. p′ ← HI
3. for i = 1 ... | p | :
4. if i /∈ σ :
5. (x⊕=µ)← pi
6. p′ [̃x]⊕=µ
7. else
8. (x⊕= y β)← pi
9. p′[x/z]⊕= y/z β

10. if y ∩ z = ∅ :
11. p′ [̃x]⊕= ỹ β

12. ▷ Base case for slashed items
13. p′[z/z]⊕= 1
14. ▷ Rules that recover the original items in p

15. p′[X]⊕= z̃ X/z

16. p′[X]⊕= not-matchesz(X) X̃

17. return p′

187Annoyingly, when the program has inputs, the transformation given will rename the inputs
(wrapping them in ·̃)—-breaking the existing program API. It is straightforward to relax this
assumption when the names of the inputs are disjoint from items that are defined by the
program: (1) override x̃ not to mark x when it is an input relation, and (2) constrain line 27.16
so that it will not produce the problematic rule x⊕= not-matchesz(x) x.

188To support slashing-out constants and built-in relations, we can wrap them in temporary
items, and then eliminate them (by unfolding) once the speculation transformation is complete.

189It is sometimes useful to partition pi into three more specialized rules using boolean side
conditions: (y1 ∩ z), (y1 ∖ z), and (z ∖ y1).
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Algorithm 28 not-matches: Implementation of the not-matches relation.

▷ This method implements not-matchesz(Y)
def
= 1[Y /∈ z], a built-in relation that checks if Y is not an

element of the set of terms denoted by the nonground term z. Importantly, the variables in z
are part of the name of the builtin, so they are not summed over when the builtin is used in a
rule. This method should be included in the library of built-in relations. It is implemented as
a result stream to be compatible with §3.1.2.2.

def not-matchesz(y):
if unify(z, y) = FAIL : yield 1 ▷ certain, satisfied: z and y cannot match
else if cover(z, y) ̸= FAIL : return ▷ certain, fail: z ⊇ y means that y must be in z
else yield not-matchesz(y) ▷ uncertain, delay: y could still become an instance of z

The transformation will generate novel function symbols to denote the ·/· and

·̃ items. These names must be disjoint from the names of the items in p. The

pseudocode utilizes not-matchesz(Y)
def
= 1[Y /∈ z], a built-in relation that checks

if Y is not an element of the set of terms denoted by the nonground term z.

Importantly, the variables in z should not be summed over—they are meant to be

local to the builtin.190 For completeness, we include pseudocode for not-matches in

Algorithm 28. The transformation should often be followed by abbreviate (§6.2.3)

to refine its output, as it often contains useless rules and variables.

Extensions. We also note that a straightforward adaptation to Defini-

tion 41 speculates over the rightmost subgoal instead of the leftmost subgoal.

Our implementation provides both leftmost and rightmost options. When the

semiring is commutative, we can permute the subgoals (as a pre-transformation)

to make any subgoal the first subgoal in its rule. Even without commuta-

tivity, some subgoals may commute with one another—in particular, built-in

constraints can be permuted because they multiply a 1 or 0, which can be freely

moved around thanks to the semiring properties. Lastly, we note that many of
190The strategy of using a built-in relation is a workaround that avoids a mixed semiring program

as was done in Eisner and Blatz (2007)’s presentation.
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the ·̃ items created by the speculation transformation are unnecessary; thus, it

is often worth following speculation with unfolding and useless-rule elimination

to remove some unnecessary intermediate ·̃ items. An easy choice is to avoid

creating ·̃ rules for any item that is not in {z} ∪ {y | (x⊕= y β) = pi, i ∈ σ}.191

Correctness. We believe that the speculation transformation is strongly

semantics-preserving. The ·/· and ·̃ items should be regarded as new definitions

(§7.3), as they are not defined in p. We have provided a derivation mapping for

the transformation in §B.3. However, we have not provided a complete proof of

correctness.

7.5.2 Left-Corner Transformation

We extend the left-corner transformation (Rosenkrantz and Lewis, 1970;

Johnson, 1998) to Dyna programs. To have fine-grained control over how the

transformation is applied, we build on the selective left-corner transformation

(Johnson and Roark, 2000), which permits the transformation to apply to a subset

of rules. The left-corner transformation is closely related to speculation: both

transformations hoist up the subderivations, but the left-corner transformation

will, additionally, switch left recursion to right recursion (i.e., it will transpose

the spine of the derivation). Below is a schematic that builds on the earlier

discussion of speculation.

191This set of items is useful for specializing the recovery rules on line 27.15 and line 27.16.

193



x

β(n)y(n)

β(n−1)

y(2)

β(1)y(1)

β(0)z

···

=⇒

x

x/z

x/y(1)

x/y(n−1)

x/y(n)

x/x

1

β(n)

β(n−1)

β(1)

β(0)

z̃

···

In contrast with speculation, the slashed items in the trace of the transformed

derivation are named differently; rather than naming them by the item z that is

hoisted up, they are named by the destination y. This is how the transformation

manages to transpose the derivation tree. This effect can be beneficial when the

program defines many items irrelevant to a set of output items.192 Our version

of the left-corner transformation does not constrain the base of the spine, so

there is no need to create the recursive rules of ·̃ items. We maintain the ·̃ items

to distinguish items at the base of the spine from the top.

Definition 42. Given a program p, left-corner transformation p′ = leftcorner(p,σ)

is parameterized by a set of rule indices σ. For simplicity, the transformation be-

192This is analogous to forward-mode vs. backward-mode automatic differentiation (Griewank
and Walther, 2008). Specifically, speculation is to left-corner as forward-mode is to backward-
mode. The differentiation methods build items of the form ∂x

∂z , much like hoisting methods
build items of the form x/z. However, they build different subsets: backward-mode and left-
corner target the numerators, and forward-mode and speculation target the denominators. It
is well-known in the automatic differentiation setting, that backward-mode is more efficient
when the number of numerators needed is less than the number of denominators needed, and
forward-mode is more efficient in the opposite regime.
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low requires that (1) p does not have inputs,193 (2) for each i ∈ σ, (x⊕= y1 ··· yK) = pi:

(a) K > 0, (b) y1 is not a constant, builtin, or input.194

Algorithm 29 leftcorner: Apply the left-corner transformation (Definition 42).
1. def leftcorner(p,σ):
2. p′ ← HI
3. for i = 1 ... | p | :
4. if i /∈ σ :
5. (x⊕=µ)← pi
6. p′ [̃x]⊕=µ
7. else
8. (x⊕= y β)← pi
9. p′[X/y]⊕=β X/x

10. ▷ Base case of slashed items
11. p′[X/X]⊕= 1
12. ▷ Rules that recover the original items in p

13. p′[X]⊕= Z̃ X/Z
14. p′[X]⊕= X̃

15. return p′

The comments in the bottom paragraph of Definition 41 apply here.

Extensions. The same extensions for the case of speculation apply here:

the right-corner transformation that hoists the rightmost subgoals, and permut-

ing commutative subgoals.

Correctness. We believe that the left-corner transformation is strongly

semantics-preserving. It is sufficiently similar to the grammar transformation

that we do not foresee any issues. However, we have not formally checked all of

the details.

193See footnote 187 for a workaround.
194See footnote 188 for a workaround.
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7.5.3 Examples

Example 41. What happens if we apply the left-corner transformation to Exam-

ple 40? The transformed program is almost identical: both produce precisely the

same items. However, as expected, the left-corner transformation will transpose

the recursion: the slashed items are the same but defined using a right-recursive

rule instead of a left-recursive rule. Specifically, the new program is the same as

#483–487, except that we replace #483 (repeated below)

488 p(X,I,K) / p(X’,I’,K’) += p(Y,I,K) / p(X’,I’,K’) * r(X,Y).

with the rule

489 p(X’,I’,K’) / p(Y,I,K) += r(X,Y) * p(X’,I’,K’) / p(X,I,K).

Example 42. This example explores the connection between speculation and the

variable-elimination strategy we saw in §7.3. Consider the following single-rule

program, which may be regarded as the product of three matrices:

490 a(I,L) += b(I,J) * c(J,K) * d(K,L).

Factoring the last two subgoals into an intermediate item tmp(J,L):

491 a(I,L) += b(I,J) * tmp(J,L).
492 tmp(J,L) += c(J,K) * d(K,L).

The new program is more efficient because a rule’s maximum number of variables

is reduced. We can mimic this transformation by speculation with σ =
{
#490

}
and z = b(I’,J’):

493 a(I,L) / b(I’,J’) += b(I,J) / b(I’,J’) * c(J,K) * d(K,L).
494 a(I,L) += a(I,L) / b(I’,J’) * b(I’,J’).
495 b(I’,J’) / b(I’,J’).

Next, we eliminate #495 by unfolding:
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496 a(I,L) += a(I,L) / b(I,J) * b(I,J).
497 a(I,L) / b(I,J) += c(J,K) * d(K,L).

Notice that the second rule always has I free. Thus, speculation’s items a(I,L) / b(I,J)

are effectively just a naming scheme for the tmp(J,L) items, a step that we can

automate with the abbreviation transformation (§6.2.3).

Example 43. Suppose we have a program such as

498 goal += x(I) * f(I).
499 goal += x(I) * g(J) * z.

and we want to factor it into the following form:

500 goal += x(I) * (???).

We can do so by speculation with z = x(I) and σ =
{
#498,#499

}
:

501 goal += x(I’) * goal/x(I’).
502 goal/x(I’) += x(I)/x(I’) * f(I).
503 goal/x(I’) += x(I)/x(I’) * g(J).
504 x(I’)/x(I’).

Next, we unfold the x(I)/x(I’) subgoals:

505 goal += x(I’) * goal/x(I’). % unchanged
506 goal/x(I’) += f(I’).
507 goal/x(I’) += g(J) * z.

Notice that unfolding binds I to I′ in #506, and #507 is non-range-restricted

(i.e., has a free variable in its head). We see that goal/x(I’) is a clever scheme for

naming the contributions from both of these rules. This program has the form

that we were after.

Example 44. A split bilexical grammar is one where the head word must combine

with all its right children before any of its left children. The naive algorithm,

given below, runs in O(n5). Eisner and Satta (1999a) were able to speed it up to

O(n3). Eisner and Blatz (2007) described the speedup in terms of speculation. To
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simplify the example, we assume an unlabeled grammar.

508 r(I,I,K) += word(I,K). % no right children yet
509 r(P,I,K) += r(P,I,J) * arc(P → C) * l(C,J,K). % add right child
510

511 l(P,I,K) += r(P,I,K). % no left children yet
512 l(P,I,K) += l(C,I,J) * arc(C ← P) * l(P,J,K). % add left child
513

514 goal += l(P,0,N) * len(N).

The crux of the speedup is to transform left constituents so they can be built

without a specific right constituent. This work can be done independently of

the right constituent, and the slashed items we will derive in the transformed

program below do not instantiate K—leading to an improved runtime. Below is

the output of speculation from the right with z = r(H’,I’,K’) and σ =
{
#511,#512

}
after omitting the useless g̃oal item and useless-rule elimination:

515 r̃(I,I,K) += word(I,K).
516 r̃(P,I,K) += r(P,I,J) * arc(P → C) * l(C,J,K).
517

518 l(P,I,K) / r(H’,I’,K’) += r(P,I,K) / r(H’,I’,K’).
519 l(P,I,K) / r(H’,I’,K’) += l(C,I,J) * arc(C ← P) * l(P,J,K) / r(H’,I’,K’).
520

521 goal += += l(H,0,N) * len(N).
522

523 % base case for slashed items
524 (r(H’,I’,K’) / r(H’,I’,K’)).
525

526 % recovery rules
527 r(P,I,K) += r̃(H’,I’,K’) * r(P,I,K) / r(H’,I’,K’).
528 l(P,I,K) += r̃(H’,I’,K’) * l(P,I,K) / r(H’,I’,K’).

Next, we eliminate all uses of the original r and l items using unfold; and we run

program specialization, which exposes variables that are equated:

529 r̃(I,I,K) += word(I,K).
530 r̃(I,I,K) += r̃(I,I,J) * arc(I → C) * r̃(C,C,K) * l(C,J,K) / r(C,C,K).
531 l(I’,I’,K’) / r(I’,I’,K’).
532 l(I’,I,K’) / r(I’,I’,K’) += r̃(C,C,J) * l(C,I,J) / r(C,C,J)
533 * arc(C ← I’) * l(I’,J,K’) / r(I’,I’,K’).
534 goal += r̃(H,H,N) * l(H,0,N) / r(H,H,N) * len(N).

We see that the first two arguments of r̃(H,H,N) are always equal; so we can
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abbreviate r̃(H,H,N) 7−→ rtrap(H,N).

535 rtrap(I,K) += word(I,K).
536 rtrap(I,K) += rtrap(I,J) * arc(I → C) * rtrap(C,K) * l(C,J,K) / r(C,C,K).
537 l(I’,I’,K’) / r(I’,I’,K’).
538 l(I’,I,K’) / r(I’,I’,K’) += rtrap(C,J) * l(C,I,J) / r(C,C,J)
539 * arc(C ← I’) * l(I’,J,K’) / r(I’,I’,K’).
540 goal += rtrap(H,N) * l(H,0,N) / r(H,H,N) * len(N).

We chose this name because it corresponds to Eisner and Satta (1999a)’s notion

of a “right trapezoid;” we will derive their “left trapezoid” next. First, we observe

the redundancy in l(I’,I,K’) / r(I’,I’,K’), which has three variables equated. We

can abbreviate l(I’,I,K’) / r(I’,I’,K’) 7−→ lr(I’,I,K’).

541 rtrap(I,K) += word(I,K).
542 rtrap(I,K) += rtrap(I,J) * arc(I → C) * rtrap(C,K) * lr(C,J,K).
543 lr(I’,I’,K’).
544 lr(I’,I,K’) += rtrap(C,J) * lr(C,I,J) * arc(C ← I’) * lr(I’,J,K’).
545 goal += lr(H,0,N) * rtrap(H,N) * len(N).

Next, we observe that K’ in lr(I’,I,K’) is always free, so we drop it by abbreviating

lr(I’,I,K’) 7−→ ltrap(I’,I).

546 rtrap(I,K) += word(I,K).
547 rtrap(I,K) += rtrap(I,J) * arc(I → C) * rtrap(C,K) * ltrap(C,J).
548 ltrap(I’,I’).
549 ltrap(I’,I) += rtrap(C,J) * ltrap(C,I) * arc(C ← I’) * ltrap(I’,J).
550 goal += ltrap(H,0) * rtrap(H,N) * len(N).

Finally, we apply variable elimination to derive the following new items:

551 tmp(C,I) += ltrap(I,J) * rtrap(C,J).

Eagerly folding this new definition into the program gives us our final O(n3) time

algorithm:

552 rtrap(I,K) += word(I,K)
553 rtrap(I,K) += tmp(I,C) * arc(I → C) * rtrap(C,K).
554 ltrap(I’,I’).
555 ltrap(I’,I) += ltrap(C,I) * arc(C ← I’) * tmp(C,I’).
556 tmp(C,I) += ltrap(I,J) * rtrap(C,J).
557 goal += ltrap(H,0) * rtrap(H,N) * len(N).
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Example 45. Consider the following left-recursive program for computing the

total weight of all paths in a graph.

558 startpath(X) += start(X).
559 startpath(Y) += startpath(X) * edge(X,Y).
560 goal += startpath(X) * stop(X).

If we apply the left-corner transformation to it, we get the following right-recursive

program:

561 (goal / start(X)) += goal / startpath(X).
562 (goal / startpath(X)) += edge(X,Y) * goal / startpath(Y).
563 (goal / startpath(X)) += stop(X).
564 goal += start(X) * goal / start(X).

Next, we unfold goal / start(X) in the bottom rule and abbreviate (goal / startpath(X))

7−→ stoppath(X):

565 stoppath(X) += edge(X,Y) * stoppath(Y).
566 stoppath(X) += stop(X).
567 goal += start(X) * stoppath(X).

This program computes the same value for goal, but it does so using the total

weight of paths starting at a given node instead of the total weight of all paths

ending at a given node. Both are well-known methods for computing the total

weight of all paths. Here, we have presented a mechanical technique for deriving

one from the other. (Note that if we apply the same exercise to this last program

using the right-corner transformation, we will arrive at the original program.)

Example 46. Recall Example 28. That program (repeated below) sums the total

weight of all paths in a graph where the paths are written in a very direct style

as a list of nodes visited along the path.

568 goal += start(X1) * β([X1|Xs]).
569 β([X1,X2|Xs]) += edge(X1,X2) * β([X2|Xs]).
570 β([X]) += stop(X).
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We apply the right-corner transformation to this program with σ equal to all the

rules. We get the following after useless-rule elimination:

571 (Z / β([X1|Xs])) += start(X1) * Z / goal.
572 (Z / β([X2|Xs])) += edge(X1,X2) * Z / β([X1,X2|Xs]).
573 (Z / stop(X)) += Z / β([X]).
574 (Z / Z).
575 goal += stop(X1) * goal / stop(X1).

After specialization:

576 (goal / path([X1|Xs])) += start(X1) * goal / goal.
577 (goal / path([X2|Xs])) += edge(X1,X2) * goal / path([X1,X2|Xs]).
578 (goal / stop(X)) += goal / path([X]).
579 (goal / goal).
580 goal += stop(X1) * goal / stop(X1).

When we run this program, the tail of the list Xs in goal/path([X2|Xs]) is never

instantiated. Thus, we can abbreviate goal/path([X|Xs]) 7−→ starpath(X), and we

recover the efficient algorithm from Example 27.

7.6 Discussion

Implementation. We have implemented and tested these transforma-

tions. They are available in our system: https://github.com/timvieira/dyna-pi.

Using these transformations in the context of an automated optimizer (§8) has

stress-tested them since buggy transformations often lead to fast programs

(e.g., the empty program), and search probes the possible arguments to the

transformations.

Eisner and Blatz (2007). The original paper on transforming semiring-

weighted logic programs is Eisner and Blatz (2007). They extended the fold/unfold
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transformations (Tamaki and Sato, 1984), and the magic sets transformations

(Ramakrishnan, 1991) from the unweighted setting to the weighted setting and

proposed a novel speculation transformation.

Single vs. Multiple Semirings. Eisner and Blatz (2007) allowed

programs to use more than one semiring to combine values. They supported

this case by transforming semiring program fragments; our work should also be

compatible with semiring fragments. As we discussed in §4, our semantics are

based on sums over derivations, and Eisner and Blatz (2007)’s are based on the

weaker notion of fixpoints. The sum-over-derivations semantics is deeply tied to

the distributive property of the semiring. Mixing semirings means that property

is not always available.195

Bringing Generalized Fold and Unfold to the Weighted Setting.

Eisner and Blatz (2007)’s extensions of the fold and unfold transformations to the

weighted setting were limited to basic folds. Consequently, their exploration

of what fold and unfold can accomplish was severely limited. In particular, they

never discovered self-supporting recursive definitions like startpath (Example 27).

We generalized Eisner and Blatz (2007)’s treatment of fold/unfold to allow fold and

unfold with respect to auxiliary programs, such as prior versions of the program

in a sequence of transformations. The generalization to auxiliary definitions

was previously observed to be powerful in the unweighted setting (e.g., Tamaki

and Sato (1984), Roychoudhury et al. (1999), Bossi et al. (1992), and Pettorossi

195A notable exception is when the mixed-semiring program is stratified—meaning that we can
partition its non-0 items into strongly connected components (as we did in §5.4) such that
each component uses a single semiring.
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and Proietti (1994)). Examples like Example 27 and Example 28 are impossible

with only basic fold. We give examples of transformed programs going from

non-terminating to terminating and exponential to polynomial time. Unlike

the limited examples presented in Eisner and Blatz (2007) (and Gildea (2011)),

which only employed simple, superficial "hook tricks," our approach led to the

discovery of self-supporting recursive definitions. However, some additional care

must be taken to prevent ill-founded circular definitions. We characterized the

ill-founded definition problem in §7.4.2.2 as the nontermination of a derivation

mapping. We proposed a practical system for avoiding ill-founded definitions in

§7.4.2.4 that builds on Roychoudhury et al. (1999).

Speculation as a Hoisting Transformation. We deepen the discus-

sion of the speculation transformation by characterizing it as a structural change

to the derivations of a program. We also connected it to the better-known left-

corner grammar transformations (Rosenkrantz and Lewis, 1970; Johnson, 1998;

Johnson and Roark, 2000), which we generalized to Dyna programs (§7.5.2).

Correctness Proofs. Eisner and Blatz (2007) never formally proved

the correctness of (basic) folding or unfolding; we have filled this gap in the

semiring-weighted logic programming literature.

Contributions to the Fold and Unfold Literature. We analyze the

fold–unfold transformation’s ability to preserve the entire set of derivations for

each item. Prior work196 focused on the preservation of at least one derivation

196E.g., Tamaki and Sato (1984), Maher (1987), Kawamura and Kanamori (1990), Bossi et al.
(1992), Roychoudhury et al. (1999), and Pettorossi and Proietti (1994).
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for each item, which is insufficient for our semiring-weighted setting.

Extending Roychoudhury et al. (1999). Our practical fold/unfold safety

test (§7.4.2.4) builds directly on Roychoudhury et al. (1999) for unweighted logic

programming. We proved that their technique extends directly to weighted

logic programming. However, we sought a different notion of correctness: strong

equivalence. As a result, we provide an alternative lens on why their technique is

correct. We have also structured our presentation (and proofs) to disentangle the

structure of the transformation from the static analysis technique used to check

its safety. Additionally, §7.4.2.4 makes their approach’s static analysis modeling

assumptions more explicit than in other work. One minor contribution is that

we have extended their method to support the generalized unfold transformation,

which was straightforward but missing in their work. Lastly, as a practical

matter, we proposed using constraint solvers to eliminate the need to specify an

initial measure, which improves our ability to approve certain transformations

that would otherwise be rejected.

A Notable Omission: The Magic Sets Transformation. Eisner and

Blatz (2007) gave a weighted generalization of the magic sets transformation

(Ramakrishnan, 1991), a well-known transformation to the Datalog community

as it is a simple method for partially specializing a program to some specific

queries. An exciting application of the magic sets transformation is that it can

recover the top-down filtering part of Earley’s algorithm when applied to CKY

(Minnen, 1996; Eisner and Blatz, 2007). Unfortunately, we do not support Eisner

and Blatz (2007)’s version of magic sets because the transformed program mixes
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semirings. Support for mixed semiring programs is interesting future work.

However, a different perspective on the magic sets transformation is that it is

a recipe for prioritization of agenda-based evaluation (§5.1.3). It is possible to

derive tighter heuristics than the simple boolean heuristic given by magic sets.

Felzenszwalb and McAllester (2007) and Prieditis (1993) show how to use the

outside context of a relaxed program to prioritize the fine-grained inside pass.

The relaxed programs can be automatically discovered and optimized by search-

ing over which constraints and variables to drop. The values that it computes

for prioritization can be more expressive than booleans. Moreover, in the case

of superior semirings, we can even automatically derive admissible heuristics

for A∗-like decoding. In future work, we would like to explore this direction.

Summary

We presented several program transformations that can be used to optimize a

given program. We have many examples where the transformations dramatically

improve the running time. In § 8, we will use search to automatically find a

transformation sequence that minimizes the program’s running time within a

search budget.
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Chapter 8

Searching For Faster Dynamic

Programs

This chapter develops a tool for automating the discovery of faster programs.

At a high level, our approach is straightforward: given an initial, correct pro-

gram, we will search for a sequence of meaning-preserving, source-to-source

transformations (§7) that minimizes a given cost function, such as the worst-case

runtime bounds of §6.3 or the average execution time of the program on a given

input workload. We will discuss the benefits and drawbacks of several cost func-

tions. We will describe how we structure our transformation sequence search

space. We conclude with experiments demonstrating that our proof-of-concept

system is capable of replicating the examples given throughout the thesis as well

as many of the missed speed-ups found in the literature (outlined in Example 1).
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8.1 The Graph Search Problem

We consider an abstract graph search problem, ⟨S, s0, T , transitions, cost⟩,

where S is a state space, transitions : S → 2S is a transition function, s0 ∈ S

is an initial state, T ⊆ S is a set of terminal states, and cost : T → R≥0 is a

cost function on the terminal states.197 The search algorithm will treat the

cost and transitions functions as black boxes. The goal of the search problem is

to find the (reachable) terminal state in the graph that has the lowest cost,

s∗ = mins∈T cost(s).

Our program optimization problem (depicted in Figure 8.1) can be straight-

forwardly mapped into this notation. Our states s ∈ S are programs.198 The

initial state s0 is the initial program. Each transition is the application of a

semantics-preserving program transformation (§ 7). This means every state

reachable from s0 in this graph is a semantically equivalent program. In our

setting, every state is terminal. In §8.1.1, we will describe the search algorithm

that we use to traverse this graph. In §8.1.2, we will discuss the details of how

we structured the search space used in our experiments (§8.3). In §8.2, we will

discuss the cost function.

197In principle, the cost function does not have to be real-valued; it can be any mapping from
states to a totally ordered set.

198To use the generalized fold/unfold transformations, the state must be augmented with the
metadata required to check the measure-based safety conditions of §7.4.2.4.
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β(X,I,K) += γ(X,Y,Z)
* β(Y,I,J) * β(Z,J,K).

β(X,I,K) += γ(X,Y)
* word(Y,I,K).

z += β(root,0,N) * len(N).

start

β(X,I,K) +=
tmp(I,J,X,Z) * β(Z,J,K).

β(X,I,K) += γ(X,Y)
* word(Y,I,K).

z += β(root,0,N) * len(N).
tmp(I,J,X,Z) +=
β(Y,I,J) * γ(X,Y,Z).

define+fold

unfold

β(X,I,K) += γ(X,Y,Z)
* β(Y,I,J) * β(Z,J,K).

β(X,I,K) += γ(X,Y)
* word(Y,I,K).

z += β(root,0,N) * len(N).
tmp(I,J,X,Z) += β(Y,I,J)
* γ(X,Y,Z).

cost = O
(
k3 n3

)
cost = O

(
k3 n2 + k2 n3

)
cost = O

(
k3 n3

)
unfold

fold

eliminate

Figure 8.1: Depiction of the program optimization graph search problem. The
program used in this figure is CKY (Example 6). Nodes are Dyna programs
(§ 2). The node pointed to by “start” indicates the user’s program. Edges are
program transformations (§ 7). Costs are derived by program analysis (§ 6).
Only a tiny subset of the nodes and edges in the search graph is shown. The
dotted unlabeled outgoing edges represent additional transformations we did
not elaborate on in the diagram to reduce clutter.

8.1.1 Prioritized Search Algorithm

Our search algorithm is based on best-first search, which is often used to

solve difficult combinatorial optimization problems (Russell and Norvig, 2020).

Pseudocode is given in Algorithm 30. The basic idea of the best-first search

algorithm is to maintain a set of candidate statesQ to explore next and to expand

the state that is estimated to be the most promising based on a search policy π

that selects among the candidates. Once a candidate is selected, its successor

states are enumerated according to transitions and added to the candidate set Q (if

they have not previously been added).

Our overall search algorithm searchπ is a kind of anytime algorithm (Zilber-

stein, 1996) that traverses the graph until the search budget is exceeded. While

searchπ traverses the graph, it keeps track of the least cost terminal state it has

found so far. If the search budget is reached before the algorithm has explored
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Algorithm 30 search: Algorithm for a given graph search problem
⟨S,A, s0, T , transitions, cost⟩. Requires a search policy π to select which candidate
state to expand. We also require that a search budget is specified, such as an
upper limit on the total execution time spent searching.

1. def searchπ(s0):
2. Q ← {s0} ▷ Set of candidate states to explore next
3. visited← {s0} ▷ Set of states that have already been visited
4. while | Q | > 0 and the search budget has not been exceeded:
5. s← π(Q) ▷ Pick any state among the candidates
6. Q.remove(s)
7. if s ∈ T :
8. evaluate cost(s)

9. for s′ ← transitions(s) :
10. if s′ /∈ visited : ▷ Add s′ as a candidate, if we have not already done so in the past
11. Q.add(s′)
12. visited.add(s′)

return the lowest cost state evaluated

the entire graph, it will return the best solution found up until that point. This

makes it an anytime algorithm because it can provide a solution even if it has not

fully explored the search space (i.e., before | Q | = 0). The search policy π governs

the order in which the states of the graph are explored. Abstractly, π takes the

set of candidate states Q ⊆ S and returns an element from Q, possibly randomly.

It can encode a variety of search orders (e.g., depth-first search, breadth-first

search, greedy search, and A∗). In practice, we use a priority queue to implement

Q and π, and we compute the priority of a given state when we add the state to

Q (line 30.11).

This algorithm can guarantee that the best reachable state is eventually

found if the search budget is sufficiently large and π does not starve any can-

didate state.199 A simple policy that guarantees this is the breadth-first policy,

199Starving means that the state says on the priority queue indefinitely.
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which enumerates states in first-in-first-out order (FIFO); or, equivalently, by the

length of the path by which it was first discovered. This strategy does not have

good anytime performance. On the other hand, the greedy strategy of always

selecting the cheapest state often has good anytime performance, but it may

starve states. Therefore, we use a hybrid strategy that interleaves greedy and

FIFO choices to get the benefits of both.

8.1.2 Search Space Details

The most basic version of the search graph would say that all valid transfor-

mations from §7 are available at all times.200 However, this would result in an as-

tronomical number of states to explore, and it would ignore some useful problem

structure. This section provides the details of how our search space is structured.

Eureka definitions. For proposing Eureka definitions (§7.3), our au-

tomated system considers variable-elimination actions.201 To enumerate the

available variable-elimination definitions, we consider each rule one at a time.

For a given rule R, the variable v ∈ vars(R) can be usefully eliminated if it does

not appear in all of the subgoals in the rule’s body and it does not appear in the

head of the rule.202 Thus, to enumerate all variable-elimination definitions, we

200In the sections of § 7 describing each transformation, we discussed the conditions for the
transformations to be valid.

201In principle, other Eureka definitions §7.3 be straightforwardly added within our search
framework as additional transformations.

202More formally, the set of variables that can be eliminated is elim(R)
def
= {v | factors(R, v) ̸=

body(R), v /∈ head(R)} where factors(R, v)
def
= {y | y ∈ body(R), v ∈ vars(y)}. If any rule R of the

program p contains variables that can be eliminated (|elim(R)| > 0), then eliminating any
variable v ∈ elim(R) by folding factors(R, v) out of R into a new rule reduces that R’s runtime
bound, which may reduce (and never increases) the runtime bound of the program. When
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identify each variable that can be eliminated and propose a new definition using

the recipe detailed in §7.3.

Unfold. Recall that the generalized unfold transformation (Definition 35)

is parameterized by a source program p(s), rule index r ∈ p(s), a subgoal index of r,

and auxiliary definitions p(d). Under this parameterization, it is straightforward

to enumerate all instances of unfold: any rule and any non-input subgoal in

that rule are candidates for unfolding. The choice of p(d) is discussed later.

Generalized unfolds must pass the measure-based safety test.

Fold. Recall that the generalized fold transformation (Definition 36) is

parameterized by a source program p(s), auxiliary definitions p(d), a new rule r,

and a set of rules S ⊆ p(s) that will be replaced.

• We generate candidate rules r as follows: for each pair ⟨S,D⟩ ∈ p(s) × p(d), we

attempt to replace subproducts of S’s body by D.203 From there, we obtain

a set of r candidates and filter out those that do not satisfy the reversibility

condition of the fold transformation.

• The set S is determined by r and the position j that we unfold in r’s body in

the generalized reversibility test. In the generalized reversibility test, we have

a generalized unfold transformation. That unfold transformation adds a set of

rules, and that set of rules is S.

more than one variable can be eliminated (|elim(R)| > 1), the order in which the variables
are eliminated will affect the eventual runtime bound. Unfortunately, finding an optimal
sequence of variable-elimination steps is NP-hard by reduction from variable-elimination
ordering in probabilistic graphical models (Eisner and Blatz, 2007; Gildea, 2011).

203The relevant algorithms for enumerating subproducts are given in §C.2. Once the rule bodies
are aligned, we replace the matched subproduct with the head of D. We will subsequently
check the validity of this replacement using the reversibility condition.
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• Generalized folds must pass the measure-based safety test.

Auxiliary definitions used for generalized fold/unfold. For efficiency,

we limit the auxiliary definitions considered by generalized folds and unfold

transformations to the original definitions of each item.204 We have found our

choice sufficient for our benchmark problems.

Reducing the number of safety checks. We found it more efficient

overall to check the fold/unfold safety conditions after the transformed program

is selected by π. This results in significantly fewer calls to the constraint solver.

This way, we only have to check the safety conditions of the most promising

transformations rather than every transformation. Technically, this means that

a state is only terminal (i.e., a member of T ) after it passes the safety test. Also,

we do not continue transforming states deemed unsafe by the test.

Hoisting transformations. Recall the hoisting transformations (i.e., spec-

ulation and left-corner) are parameterized by a source program p(s) and a subset

of rules σ ⊆ p(s). For speculation, we have an additional parameter z ∈ H that

describes the type of the item. In the non-commutative case, the choice of left vs.

right is also a parameter. In the commutative case, we consider moving any of

the subgoals in each of the rules in σ to be the leftmost subgoal as an additional

parameter. Unfortunately, the hoisting transformations are difficult to search

over because there are far too many of them available: the number of valid

hoisting transformations scales exponentially with the number of rules—and it
204In principle, any program visited in the entire search space can be used as an auxiliary

definition. However, that yields far too many options, and these options do not appear to
increase the set of states that are reachable in practice.
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is even worse if the program’s semiring is commutative! This may be tolerable

for a small set of programs, each with only a few rules, but incorporating it into

search will result in far too many candidate states. We have included methods

for enumerating these transformations in the software library, but they must be

used sparingly, or else the search space grows too large.

Program specialization. Recall that the abbreviation transformation

(§6.2) can speedup a given program, but may do so by eliminating useless

items (i.e., making their values 0). However, our transformation framework

(§7) assumes all programs are (strongly) equivalent; thus, we may only apply

abbreviation as a post-processing step. The cost function, on the other hand,

may wish to account for the cost of the abbreviated program. However, running

abbreviation often may slow down search.

Rule to-do list. The unfold and Eureka generation methods we consider

are centered around a specific rule in the current version of the transformed

program. Applying transformations to rules R,R′ ∈ p(s) in either order will get

the same result if neither transform makes the other one impossible. Thus, we

consider transformations in a canonical order. Each state will now consist of a

program together with a to-do list of rules that can still be transformed. The

possible actions at that state consist of removing the top rule R from the list

(declining to transform R) or applying the next transformation. Applying such

a transform may delete and/or add program rules, which are correspondingly

deleted from the list and/or added at the bottom. (If the list is empty, no more

actions are possible.) This design reduces the branching factor by an amount
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proportional to the number of rules. Of course, a potential downside is that it

makes the search tree deeper by a factor proportional to the number of rules.

8.2 Cost Functions

There are two broad families of cost functions: empirical and analytical. Our

experiments will only use analytical bounds; we will explain our position here.

Empirical cost functions. The most direct cost function to consider

optimizing is the empirical execution time of running a given program on a

specific workload of representative inputs (e.g., running a transformed parser

on actual sentences from the Penn Treebank (Marcus et al., 1993)) with a

specific solver configuration (e.g., prioritized fixpoint iteration with SCC-based

prioritization) on a specific computer (e.g., your laptop).

Analytical cost functions.205 Analytical runtime bounds, such as worst-

case runtime bounds, are the method of choice for the theoretical comparison of

algorithms in computer science. Indeed it is how we have compared algorithms

throughout this dissertation. In our setting, worst-case, analytical running time

bounds can be derived by the approach that we gave in §6.3, which automates

McAllester (2002)’s well-known meta-theorem.206 We will additionally provide a

205Although we do not explore it in this work, we briefly mention that it is possible to derive
average-case runtime estimates from statistical models of the input data. Such models are
used in database query optimizers (Deshpande et al., 2007; Chekuri and Rajaraman, 1997;
Leis et al., 2017).

206This theorem is used throughout natural language processing to analyze algorithms, e.g.,
Gildea (2011), Nederhof and Satta (2011), Gilroy et al. (2017), Melamed (2003), Kuhlmann
(2013), Nederhof and Sánchez-Sáez (2011), Büchse et al. (2011), Lopez (2009), and Eisner and
Blatz (2007).
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cheaper-to-compute proxy later in this section.

Direct execution can be expensive. Empirical cost functions can be

very expensive to evaluate—especially when the initial program is inefficient.

For example, an initial program could have an infinite running time, but its

optimized version might be finite. Similarly, evaluating the execution time of an

O(n1000) program, unsurprisingly, requires O(n1000) time. To mitigate the issue

of some programs running very long on certain inputs, it is common to impose a

time limit on the execution of any given program. We also have the challenge

that the runtime measurements must be averaged over many runs to estimate

the expected running time precisely. Often a deterministic proxy measurement

is preferable. In our setting, the observed number of total prefix firings or the

program’s rules (§6.3) strongly correlates with the execution time of fixpoint

iteration algorithms.

Overfitting the workload. The direct execution approach requires us to

specify particular inputs to the program; this has the downside in that we can

overfit to these inputs. We may also overfit to specific details of how the program

was executed (e.g., hardware-specific details). Optimizing analytical measures,

or other proxies for execution time, can lead to underfitting.

Practical efficiency vs. lack of fidelity. Practical efficiency can easily

outweigh the lack of fidelity. Consider evaluating the cost of an O(n1000) pro-

gram: evaluating the wallclock time takes O(n1000) time, whereas assessing the

runtime complexity does not depend on n in this way. Optimizing the analytical

runtime can provide a crucial speedup over direct execution, enabling a more
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exhaustive search in practice. Additionally, it sidesteps the need to specify a

specific workload. Of course, the efficacy of comparing analytical bounds is highly

dependent on the fidelity of the analysis used to derive the bound: comparing

very loose bounds can lead to incorrect conclusions about which algorithm is

more efficient.207 The assumptions behind the bounds are also important, e.g.,

the tightness of the input-type specification.

Solver configuration. We are considering the optimization of programs,

not solver configurations. However, we want to highlight that the solver config-

uration, including the choice of the solver itself, is an important choice when

developing an efficient, end-to-end algorithm for a given problem.208

• The choice of solver from §5 is important: prioritized fixpoint iteration and

Newton’s method are good choices, but they have their pros/cons that depend

on the program and its input data. Additionally, each of the solvers has its

configuration options. For example, the prioritized fixpoint iteration algo-
207We caution that comparing upper bounds does not lead to sound conclusions about which

system is better. In principle, given flo ≤ f ≤ fhi and glo ≤ g ≤ ghi we can only correctly
conclude that f is definitely smaller than g iff fhi ≤ glo . In other words, the correct conclusion
requires both an upper and lower bound. Unfortunately, we do not have a method for deriving
meaningful lower bounds on running time. Nonetheless, the comparison can be accurate if
the runtime bounds are tight and characterize the typical behavior.

208Many high-performance computing systems are tuned by optimizing execution time. Some
well-known examples are numerical libraries, such as ATLAS (Whaley, Petitet, et al., 2001),
PhiPAC (Bilmes, Asanović, et al., 1996), FFTW (Frigo and Johnson, 1998), and SPIRAL
(http://www.spiral.net), where execution time is used to adapt low-level implementation
details to specific hardware. These details include loop {order, tiling, unrolling} and whether
to use instruction-level parallelism. One of the primary reasons these libraries are so popular
is that performance improvements on one computer do not necessarily generalize to other
architectures or all workloads; that is why they tune the implementation for specific hardware.
A portable performance research community has formed around tuning software to be as fast
as possible on a given computing platform. We also mention the configuration of solvers for
computationally hard problems. Hutter (2009) used black-box optimization techniques to tune
the parameters of solver heuristics for mixed-integer programming solvers and satisfiability
solvers to optimize efficiency for specific problem workloads. This approach won several
competitions, demonstrating the effectiveness of tuning solvers to a specific workload.
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rithm’s execution time will depend on the choice of the prioritization function.

The choice of convergence threshold (if applicable) affects the running time

for cyclical programs using the SCC-based approach. Newton’s method has

overhead that fixpoint iteration does not have, but it is quicker at solving

cyclical programs.

• For any given program and solver, many low-level details affect the execution

time. For example, memory layouts (e.g., row-order or column-order layout of

a dense array in memory), sparse vs. dense representations of relations (e.g.,

hash tables vs. arrays), and indexes on relations (including sorted order) can

have a dramatic effect on the running time in practice. However, they will not

manifest in the analytical runtime bounds.

Fortunately, improvements to the program are generally orthogonal and com-

plementary to the lower-level solver configurations. Our perspective is that

we should get the high-level algorithm right—i.e., find an algorithm with a

good big-O running time—before optimizing the lower-level choices. From there,

we can investigate low-level tricks, such as memory layouts, that improve the

constant factors and average execution time.

8.2.1 Fine-grained Runtime Bounds

In §6.3, we devised an automated method for assessing a given program’s

worst-case time complexity as a function of user-defined input-size parameters.209

209The validity of this bound was discussed in §6.3, but we remind the reader that the bound
assumes that the program is acyclic for the bound to be valid. Additionally, the bound assumes
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Comparing bounds. The analytical bounds provided by the method

need to be compared. The most obvious approach is to evaluate the runtime

expressions on specific values for the input-size parameters. For runtime bounds

in a single variable, it is possible to determine the faster of two runtime bounds

in the sense of big-O using a computer algebra system, such as SymPy (Meurer

et al., 2017) or Mathematica (Wolfram, 2003).210 Comparing multi-variable

runtime expressions in this way is trickier. One option is for the user to define

the input-size parameters as a function of a single parameter t (e.g., k = log(t),

n = t), and reduce to the single variable case.

Efficiency. The method from §6.3 can be slow for a few reasons:

• For some programs, abstract forward chaining may need to do a lot of work. At

one extreme, a program could have no input data; thus, abstract interpretation

will essentially solve the relaxed, booleanized version of the program. Thus,

similar to concrete execution, abstract forward chaining may also require

limits on its execution, as discussed in (§6.1.2.5).

• Overhead: Constraint propagation systems can be slow if the constraint prop-

agation rules are very productive (produce a lot of consequences). Additionally,

the method from §6.3 optimizes subgoal-ordering decisions, which can be

inefficient for rules with long bodies.211

that prioritized fixpoint iteration is used with SCC-based prioritization (§5.1.4).
210These computer algebra systems can compare the asymptotic behavior of two functions f(n)

and g(n) in the sense of big-O: f≤g ⇐⇒ f=O(g) ⇐⇒ lim supn→∞
f(n)
g(n) <∞. If the runtime

bound is a simple polynomial, this is just a comparison of the largest degree terms. However,
the runtime bounds of §6.3 may include min in addition to summation and multiplication,
which makes the comparison more detailed; hence we suggest the computer algebra system.

211A suboptimal subgoal ordering could be used to speed things up.
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These inefficiencies motivate the coarser-grained analytical bound that we

describe in §8.2.2.

8.2.2 Coarse-grained Runtime Bounds

In this section, we will describe a very fast cost function based on a folk

theorem from the Datalog community with a long history of use. The folk

theorem says that, under certain conditions (discussed later), the running time

of forward chaining execution of a given program is, at worst, linear in the

number of ways to instantiate its rules, i.e., bind the variables to constants.212 A

relatively simple bound on rule instantiations is available if we can establish

that each variable in the program can be bound in at most η different ways.

Given some other conditions discussed at the end of this section, the number

of ways to instantiate a rule with k variables is bounded by O
(
ηk
)
. Program p’s

total runtime is O
(
ηdegree(p)

)
where degree(p) is the maximum number of variables

in any rule of p. We can, therefore, use degree as a cost function to minimize

during search, and it is very efficient to compute and easy to implement.

As an example, consider CKY. The degree bound says that the program below

runs in O(η6), as the first rule must sum over 6 variables (X, Y, Z, I, J, K).

600 β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * β(Z,J,K).
601 β(X,I,K) += γ(X,Y) * β(Y,I,J).
602 β(X,I,K) += γ(X,Y) * word(Y,I,K).

This is a coarse-grained analysis: the runtime is usually given more specifically

as O(n3 k3) where n is the number of sentence positions, and k is the number of
212This is not to be confused with the number of non-0 instantiations of the rule.
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grammar symbols. (This finer-grained bound can be achieved using type analysis

§6.3: the intuition is that the variables I, J, K can each be bound in O(n) ways

while X, Y, Z can each be bound in O(k) ways.) However, the simpler analysis

O(η6) gives us a single exponent to reduce, namely 6. Below is a sped-up variant,

which sums over the variable Y separately from K:

603 β(X,I,K) += tmp(I,J,X,Z) * β(Z,J,K).
604 tmp(I,J,X,Z) += γ(X,Y,Z) * β(Y,I,J).
605 β(X,I,K) += γ(X,Y) * β(Y,I,J).
606 β(X,I,K) += γ(X,Y) * word(Y,I,K).

This variant is more efficient as its running time is O(η5). It is also more efficient

under the finer-grained analysis, O(k2 n3 + k3 n2).

For programs with multiple rules, we can refine the degree analysis to measure

the degree of each rule in the program rather than summarize it by the maximum

degree. Then, we can say that a program is faster if its list of rule degrees—-

sorted in descending order—is lexicographically smaller than that of the other

program. This has the benefit of reducing lower-order terms in the running time,

not just the highest-order term.

Correctness of the bound. The degree analysis of a Dyna program only

leads to a valid O-expression under some conditions, which we will now discuss.

1. The degree bound assumes the grounded program to be acyclic. Cycles slow

down forward chaining because we must iterate to a fixpoint (§5). Generally,

the number of iterations required to reach a fixpoint is data-dependent.

2. The degree bound assumes that all of the relations in the program are finite.

This prevents the user from encoding infinite sets, such as the Peano integers.
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Although technically, the bound is not wrong; it is just that η is infinite.

3. The degree bound also assumes constant-time semiring operations.

Recall from §6.3 that the fine-grained runtime bound makes assumptions (1)

and (3). However, the fine-grained bound is generally tighter as it can account

for certain kinds of sparsity, and its bounds do not assume all variables have

the same domain size. The fine-grained system can check if (2) is true by type

inference, so it is not assumed.

Looseness. The degree analysis might be loose for many reasons. The upper

bounds derived using our methodology assume that relations are dense and that

all variables have a single type. We note that the degree analysis becomes tighter

after performing program specialization (§6.2). For example, if two variables

in the program are always equal, we should not count them as separate, but

the degree bound would. Fortunately, specialization can equate these variables,

which improves the degree bound.213 Similarly, if a variable is always bound to

a finite set of values (or it is always uninstantiated), it should not count at all

in the degree; specialization transforms the program not to have such variables.

Despite being a crude approximation, minimizing the degree of a program often

works well. We will see in §8.3 that simply optimizing degree is sufficient to

recover several asymptotic speedups noted in the NLP literature (see §1).

213To speed up search, our experiments only run specialization on the final program.
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8.3 Experiments

We aim to devise a system for automatically improving typical dynamic

programming problems—especially those encountered in natural language pro-

cessing applications. To evaluate whether we achieved this goal, we devised a

set of benchmark programs to see how well our proposed approach works. Our

tests include most of the missed speedups that we mention in §1 as well as many

of the examples that we described throughout the dissertation; the specific set of

programs is provided in §E.

Experiment details.

• Results are summaried in Table 8.1.

• The name of each benchmark is hyperlinked to a section in §E that contains

further information about the benchmark problem, including the Dyna code of

the initial program and any notes about where the program appears in the

literature. For each of the benchmark problems, we have manually specified

its optimal degree. We assume a commutative semiring in our experiments.

• We show for each benchmark the initial, found, and optimal degrees as well as

search time: the time (in seconds) that it took search to find the optimal solution

(if one was found). Cells marked with “—” indicate that the optimal-degree

solution was not found within the search-time budget of 1 minute.

• A check mark (✔) signifies that the benchmark problem was solved to optimal-
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ity with respect to the degree cost function.

• For the search policy π, we use a hybrid greedy–FIFO strategy (suggested in

§8.1.1) where we alternate between greedy and FIFO actions.214 The greedy

policy is prioritized by degree.

Discussion.

• These tests are by no means exhaustive, but they show that our proof-of-

concept system can automate a variety of speedups. We see that in all but

two cases, search is able to find the optimal degree program within a few

seconds. We believe that we could significantly improve this already quick

time by implementing each of the program transformations more efficiently.

For example, in the implementation used for these experiments, there is a lot

of unnecessary copying, which can be expensive as programs become larger.

Improving the efficiency of the program transformations would improve our

ability to search the state space more quickly and exhaustively.

• The benchmarks {path-list, even-odd-peano, explicit-pda} are unlike the others

in that each of their initial versions has an infinite-size variable domain (i.e.,

η =∞). However, they can each be optimized so that they have finite domains.

Despite the degree bound being unaware of the change in η, the programs found

by search for path-list and even-odd-peano are optimal.

214We did not optimize the ratio of greedy and FIFO actions since it could lead to overfitting this
small set of benchmark problems. We did find that the purely FIFO policy increased average
search time significantly.
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name initial degree found degree optimal degree search time (sec)

arc-eager 6 ✔ 3 3 1.375
bad-chain-05 3 ✔ 2 2 0.398
bad-chain-10 3 ✔ 2 2 1.289
bar-hillel 10 ✔ 8 8 0.013
bilexical-labeled 8 ✔ 7 7 0.014
bilexical-unlabeled 5 ✔ 4 4 0.049
chain-05 6 ✔ 2 2 0.016
chain-10 11 ✔ 2 2 0.090
chain-expect 3 ✔ 3 3 0.003
cky+grammar 6 ✔ 3 3 1.424
cky3 6 ✔ 5 5 0.003
cky4 8 ✔ 6 6 0.012
edit 6 ✔ 4 4 0.008
even-odd-peano 1 ✔ 0 0 5.812
explicit-pda 8 6 5 —
hmm 5 ✔ 4 4 0.003
itg 9 ✔ 8 8 0.011
path-list 3 ✔ 2 2 1.164
path-start 3 ✔ 2 2 8.707
semi-markov 4 ✔ 3 3 0.002
split-head-EB 5 4 3 —
split-head-J 4 ✔ 3 3 0.780
tensor-decomp-parser 6 ✔ 4 4 1.916

Table 8.1: Experimental demonstration of our search-based program optimizer
on the benchmarks described in §E.
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• We also highlight that our system was unable to solve split-head-EB bench-

mark to optimality. We did manage to speed it up (O(η5)→ O(η4)). However,

we are unable to achieve the optimal O(η3) algorithm because we do not have

hoisting transformations in our search space (discussed in §8.1.2). Unfortu-

nately, we have not yet found an efficient strategy for searching over hoisting

transformations. However, we have verified that manually initializing the

transformation search with one round of speculation transformations on the

initial program is sufficient for our algorithm to recover the optimal degree

algorithm. The issue is that making these transformations available in other

states causes the search space to grow too much.

• The explicit-pda benchmark appears to be out of reach for our space of program

transformations. We describe how to optimize it in §E.12. The missing trick

appears to be a generalization of speculation.
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Summary

In this chapter, we developed a tool for automatically discovering faster

programs. We do so by searching for a transformation sequence that minimizes

a given cost function, which we cast as a kind of graph search. We gave a

simple anytime algorithm for performing program optimization on this graph.

We discussed the benefits and drawbacks of using various cost functions for

our optimization problem. We concluded with an experimental demonstration

of how our prototype system can optimize several benchmark problems drawn

from the literature on overlooked speedups (Example 1). In all but two of our

benchmarks, search finds the fast algorithm in a matter of seconds. However,

there is room for improvement. A particular issue we ran into experimentally

was the difficulty of searching over hoisting transformations because too many

of them were available. We also showed an example that is out of reach for

our current space of transformations—suggesting that future work will want

to broaden the available transformations. Nonetheless, we are pleased to see

that so many of the speedups found in the literature can be rapidly found

automatically. Thus, we believe this tool already provides significant value as

these previously overlooked speedups and similar ones will no longer be missed

when using our tool.
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Chapter 9

Related and Future Work

9.1 Related Work

Dyna 1. We have drawn heavily on Eisner, Goldlust, et al. (2005) and

Eisner and Blatz (2007). We have discussed these connections extensively

throughout this dissertation.

Dyna 2. The Dyna 2 language (Eisner and Filardo, 2011) is closely related

to the Dyna 1 language that we have discussed in this work, as Dyna 1 programs

are contained in the set of Dyna 2 programs. We have provided a short section

in §D describing the language and possible extensions of our work.

Algorithm = Logic + Control. The decomposition of an algorithm (for

parsing or otherwise) into a logical specification and controller is due to Kowalski

(1979), who wrote that “Algorithm = Logic + Control.” Later, in the context of

parsing algorithms, Shieber et al. (1995) wrote:
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“Although the deduction systems do not specify detailed control struc-

ture, the control information needed to turn them into full-fledged

parsers is uniform, and can therefore be given by a single deduction

engine that performs sound and complete bottom-up interpretation of

the rules of inference.”

The logical specification of algorithms was further studied in many works, such

as McAllester (2002), Ganzinger and McAllester (2002). However, it was truly

espoused by the natural language parsing community after the seminal papers

of Pereira and Warren (1983) and Shieber et al. (1995). Outside the NLP com-

munity, the programming languages community widely uses logical deduction

notation to specify operational semantics (Plotkin, 2004) and program analyses

(Whaley, Avots, et al., 2005; Ullman, 1988; Dawson et al., 1996; Reps, 1993;

Esparza et al., 2010).

Parsing as Deduction. Pereira and Warren (1983) wrote a seminal paper

to the NLP and parsing community, which cast parsing as logical deduction.

Later, Shieber et al. (1995) established deduction systems as a valuable frame-

work for concisely specifying parsing algorithms.

Goodman (1998) modernized the deduction framework to accommodate what

was at that time a budding interest in statistical parsing. He showed that

many quantities of interest, such as the total probability, the most-likely parse,

and the set of most-likely parses, could be computed using the same weighted

inference algorithm where differences are encapsulated into a choice of semiring
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weights.215 This was an important discovery, and it aligns with work in graphical

models that was going on around the same time (Aji and McEliece, 2006). At this

point, the need for a programming language for specifying weighted deductive

system was evident. Thus, the Dyna notation emerged (Eisner, Goldlust, et al.,

2005; Eisner, Goldlust, et al., 2004).

Deduction systems have been used to express several formalisms:

• Earley parsing (Pereira and Warren, 1983)

• projective dependency parsing (Eisner and Satta, 1999b)

• nonprojective dependency parsing (Cohen, Gómez-Rodríguez, et al., 2011)

• tree adjoining grammars (Alonso et al., 1999)

• combinatory categorical grammars (Kuhlmann and Satta, 2014)

• linear context-free rewriting systems (Burden and Ljunglöf, 2005)

• machine translation models (Melamed et al., 2004; Lopez, 2009)

We also mention Sikkel (1997), Gómez-Rodríguez (2010), and Goodman (1998),

which include extensive examples of deduction systems related to syntactic

analyses in NLP.

Deduction System Notation vs. Dyna Notation. The difference be-

tween semiring-weighted deduction systems and Dyna is largely superficial.

215We also mention Teitelbaum (1973) who showed that the CKY algorithm could be extended to
work in any semiring. Goodman (1998) acknowledges this paper as laying the foundation for
most of the work on semiring-weighted deduction.
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Consider a Dyna rule of the form:

x⊕= y1 ··· yK

It is rendered in deduction systems notation as

y1 ··· yK

x

Deduction notation is often used in research papers and books. However, it is

not a user-friendly programming language.216 Additionally, the Dyna notation is

more explicit about how item values are combined.217

Deductive Databases and Logic Programming. The Dyna notation is

a natural generalization of Prolog (and Datalog), which allows items to have non-

boolean values. Green, Karvounarakis, et al. (2007)—independently from Eisner,

Goldlust, et al. (2005)—discovered the beauty and utility of attaching semiring

values to Datalog rules. Their work, however, focused on data provenance218

rather than dynamic programming. We have built on the logic programming

literature in many ways: our semantics, execution, and source-to-source trans-

formations have roots in the logic programming literature. These connections

are discussed throughout the dissertation.

Einsum Notation. Dyna programs are similar to einsum notation, which

is widely used in scientific computing libraries toolkits, such as numpy (Harris

216Gómez-Rodríguez et al. (2009) built a system for interpreting unweighted rules written in
notation that mimics the deduction systems notation but in plain text.

217In Dyna 2 (discussed in §D), item values can be combined in arbitrary ways (i.e., by more than
the two semiring operations), which would not be possible in the deduction notation.

218Data provenance is a record trail that traces why certain database items exist. In effect, data
provenance provides a derivation that an item belongs in the database.
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et al., 2020), as a concise notation for tensor products.

Example 47. Below are example pairs of einsum code (in a % comment above) and

its equivalent Dyna code.

607 % out0 = einsum(’i->’, a)
608 out0 += a(I).
609 % out1 = einsum(’i,i->i’, a, b)
610 out1(I) += a(I) * b(I).
611 % out2 = einsum(’i,j->ij’, a, b)
612 out2(I,J) += a(I) * b(J).
613 % out3 = einsum(’ii->’, c)
614 out3 += c(I,I).
615 % out4 = einsum(’ij,ji->ij’, c, d)
616 out4(I,J) += c(I,J) * d(J,I).
617 % out5 = einsum(’ij,kl->ijkl’, c, d)
618 out5(I,J,K,L) += c(I,J) * d(K,L).
619 % out6 = einsum(’ij,jk->ik’, c, d)
620 out6(I,K) += c(I,J) * d(J,K).

Dyna notation extends einsum in many ways—the most important being that it

supports interlocking and recursive equations. We hope that someday Dyna—

or some variant thereof—will supplant einsum as the default domain-specific

language for tensor manipulation.

Context-Free Grammars. It is interesting to relate Dyna programs to

context-free grammars (CFGs). The mapping is as follows

(i) terminal =⇒ value

(ii) nonterminal =⇒ ground item

(iii) x→ y z =⇒ x += y * z

(iv) parse tree =⇒ derivation

(v) the yield of a parse tree =⇒ the value of a derivation

(vi) the language generated (by a nonterminal) =⇒ the total value of all deriva-

tions (of that item)
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The primary difference is that Dyna does not restrict the set of terminals and

nonterminals to finite sets. Anecdotally, exploring the connection between Dyna

programs and CFGs is how we discovered the left-corner transformation (§7.5.2)

and the Newton solver (§5.2). Lastly, we note that our program transformations

may be useful as grammar transformations, and our search method may be

effective at reducing grammar size.

9.2 Future Work

Beyond semirings. In future work, exploring the extensions of the Dyna

1 language would be interesting.

• We discuss extension to Dyna 2 in §D.

• We also mention that a relaxation of semirings that allows nonassociative

product operations (e.g., Gildea (2020)) might be interesting to explore. This

would allow the item values to be trees rather than strings of values. With

some attention to detail, we believe many of our results will likely extend to

this more general framework, but we leave that exploration for future work.

Improving efficiency. Efficiency can be improved in many ways that we

have not explored in this dissertation. We highlight a few below.

• Code generation and compilation are crucial to efficiently running Dyna pro-

grams. Eisner, Goldlust, et al. (2005) provided a compiler for Dyna, but it is

no longer actively developed. We hope to provide a similar compiler someday.
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• There are optimizations for certain semirings that can lead to more efficient

execution strategies. For example, superior semirings are amenable to A∗-

like execution algorithms (Huang, 2008; Felzenszwalb and McAllester, 2007;

Knuth, 1977). We want to explore these in future work.

• Prioritization function optimization for use in the prioritized fixpoint iteration

algorithm (§5.1.3) could improve our execution times considerably as we will

not require an SCC-decomposition pass. It may be possible to synthesize

prioritization functions using SMT as in Bagnara et al. (2010) and Podelski

and Rybalchenko (2004), which was applied to imperative programs. Synthe-

sizing an effective prioritization heuristic could greatly improve our ability to

synthesize efficient code.

• Data structure optimization can dramatically improve our ability to store

and retrieve values at the innermost loops of our execution algorithms. The

following data structure choices can have a dramatic effect on the execution

time in practice: memory layouts (e.g., row-order or column-order layout of

a dense array in memory), sparse vs. dense representations of relations (e.g.,

hash tables vs. arrays), and indexes on relations (including sorted order).219

• It would also be interesting to explore the memory-efficient mixed-chaining

algorithms of (Filardo and Eisner, 2012; Filardo, 2017).

219Vieira, Francis-Landau, et al. (2017) describe a reinforcement-learning technique for dynam-
ically favoring faster data structures during the course of execution. It uses a policy that
dynamically adjusts how much data is stored in each of the competing data structures without
duplicating data.

233



Improving transformation search. We provided a proof-of-concept

search algorithm, which is not very sophisticated. The following are some ideas

for how it might be improved:

• Decomposing the set of programs explored into subtasks that may depend

on one another enables a kind of dynamic programming that should improve

search efficiency because each subtask can be optimized recursively and com-

bined into programs that efficiently compute the required output tasks.

• Vieira, Francis-Landau, et al. (2017) proposed dynamic optimization which

adapts the solver to specific workloads as it executes using reinforcement learn-

ing rather than ahead of time as we do in §8. They also propose decomposition

into subtasks to speed up learning.

Broadening the set of program transformations. There are still

many reusable tricks employed by algorithms designers that have not yet been

systematized into program transformations, and other works are exploring the

efficient compilation of combinatorial algorithms. One notable recent work is

PERPL (Chiang, McDonald, et al., 2023), a probabilistic programming language

that can efficiently compile away certain kinds of “linear” data structures, such

as stacks and lists. We want to port over their compilation technique as a

source-to-source transformation for Dyna programs. It would allow us to recover

useful speed-ups relevant to NLP algorithms (e.g., push-down automata and

linear indexed grammars). In principle, the efficient compilation strategy used

in PERPL can transform the following inefficient program for parsing with a

234



push-down automaton

621 pda([],0).
622 pda([X|Xs],K) += pda(Xs,J) * rewrite(X,Y) * word(Y,J,K).
623 pda([X|Xs],K) += pda([Z,Y|Xs],K) * rewrite(X,Y,Z).
624 goal += length(N) * pda([s],N).
625

626 input: rewrite(_,_,_); rewrite(_,_); length(_); word(_,_,_).
627 output: goal.

into an efficient algorithm that is equivalent to CKY.

628 p(I,X,K) += rewrite(X,Y) * word(Y,I,K).
629 p(I,X,K) += pda(I,Y,J) * p(J,Z,K) * rewrite(X,Y,Z).
630 goal += length(N) * p(0,s,N).

We discuss this example further in §E.12.
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Chapter 10

Conclusion

We presented Dyna as a notation for dynamic programming (§2). We showed

in Example 1 and Example 2 that NLP authors have traditionally overlooked

speedups. We argued that this demonstrates a need for tools to facilitate the

analysis and development of NLP algorithms.

We studied Dyna’s foundations: semantics (§ 4) and execution (§ 5). We

provided a new sum-over-derivations semantics. We discovered a new execution

algorithm, Newton, and we generalized Eisner, Goldlust, et al. (2005)’s forward-

chaining algorithm to support non-range-restricted programs. We identified

and explored several rich families of source-to-source transformations that

systematize the speedup tricks found across many papers for deriving more

efficient algorithms, including the generalized fold/unfold, speculation, and

left-corner transformations.

We provided a search-based system (§8) for finding a sequence of meaning-

preserving source-to-source transformations to a given initial program that
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minimizes its worst-case running time. Our program analyzer (§6) can automate

much of the algorithmic analysis found in NLP papers, including deriving precise

big-O bounds on runtime and space complexity. We showed that our system

recovers many interesting oversights published in the NLP literature, including

oversights in the analysis (Example 2) and overlooked speedups (Example 1).

We have released a freely available prototype implementation https://github.

com/timvieira/dyna-pi. We have found that the utility of our system is that

it aids in discovering the right (i.e., efficient) high-level algorithm. In other

words, our tool is most helpful to algorithms developers and the authors of NLP

systems in finding the right recurrence—similar to a theorem-proving assistant.

Our implementation does not yet perform efficient code generation as Eisner,

Goldlust, et al. (2005). The implementation includes several useful development

utilities, such as visualization of derivations, that we have not discussed here.

We believe that this dissertation represents a significant step toward au-

tomating the development of efficient dynamic programs, especially those found

in natural language processing applications.
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Appendix A

Inference Algorithms

This section shows how our algorithms can solve certain programs with

infinitely many non-0 items.

Example 48. Below, we have three versions of the geometric series program. On

the left, we have the basic geometric series. In the middle, we have threaded

through a useless variable I. On the right, we add an inequality constraint on I.

Beneath each program variant, we show their respective charts on iterations 1, 2,

3, and the final iteration.

Basic:

p=

{
x += 1.
x += 0.5 * x.

m(1)={x += 1}
m(2)={x += 1.5}
m(3)={x += 1.75}

...
m(⋆)={x += 2}

Uninstantiated:

p=

{
x(I) += 1.
x(I) += 0.5 * x(I).

m(1)={x(I) += 1}
m(2)={x(I) += 1.5}
m(3)={x(I) += 1.75}

...
m(⋆)={x(I) += 2}

Delayed constraint:

p=

{
x(I) += (I > 10).
x(I) += 0.5 * x(I).

m(1)={x(I) += 1.0 * (I > 10)}
m(2)={x(I) += 1.5 * (I > 10)}
m(3)={x(I) += 1.75 * (I > 10)}

...
m(⋆)={x(I) += 2 * (I > 10)}
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Example 49 (Constraint Accumulation). Our method does not, however, solve

p=

{
x(I) += (I > 0).
x(I) += 0.5 * (I > J) * x(J).

After five iterations, we see that the constraints are just accumulating,

m(5)=


x(I) += (I > 0).
x(I) += 0.5 * (I > J) * (J > 0).
x(I) += 0.25 * (I > J) * (J > J1) * (J1 > 0).
x(I) += 0.125 * (I > J) * (J > J1) * (J1 > J2) * (J2 > 0).
x(I) += 0.0625 * (I > J) * (J > J1) * (J1 > J2) * (J2 > J3) * (J3 > 0).

To solve this program, we need to simplify the rule bodies. Specifically, we

need a method that counts the number of satisfying assignments to the delayed

constraints and projects any constraints on the variables in the head. For example,

to simplify the bottom rule, we need an efficient mechanism for representing the

solution to

644 multiplicity(I) += (I > J) * (J > J1) * (J1 > J2) * (J2 > J3) * (J3 > 0)

Efficiently representing and reasoning about the solutions to the multiplicity

problems encountered during fixpoint iteration in a general way is challenging.

It is possible that SMT solvers (e.g., Moura and Bjørner (2008)) may be helpful

for certain constraint domains like arithmetic inequalities. We think this is an

interesting area for future work.

Example 50. Consider the program for computing the reflexive, transitive closure

of a graph in the min-plus semiring:

645 path(I,I) min= 0
646 path(I,K) min= path(I,J) + edge(J,K).

Notice that the top rule is not range-restricted, i.e., it has a free variable in its

head. As discussed in §5.1.3, this kind of free variable will cause problems for
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Eisner, Goldlust, et al. (2005)’s forward chaining algorithm.

Below, we show naïve fixpoint iteration on the following input data:

647 edge(a,b) min= 1.
648 edge(b,c) min= 1.
649 edge(c,a) min= 1.

The chart of each iteration is shown below:

m(1)=


edge(a,b) min= 1.
edge(b,c) min= 1.
edge(c,a) min= 1.
path(I,I) min= 0.

m(2)=



edge(a,b) min= 1.
edge(b,c) min= 1.
edge(c,a) min= 1.
path(I,I) min= 0.
path(a,b) min= 1.
path(b,c) min= 1.
path(c,a) min= 1.

m(3)=



edge(a,b) min= 1.
edge(b,c) min= 1.
edge(c,a) min= 1.
path(I,I) min= 0.
path(a,b) min= 1.
path(b,c) min= 1.
path(c,a) min= 1.
path(a,c) min= 2.
path(b,a) min= 2.
path(c,b) min= 2.

m(4)=



edge(a,b) min= 1.
edge(b,c) min= 1.
edge(c,a) min= 1.
path(I,I) min= 0.
path(a,b) min= 1.
path(b,c) min= 1.
path(c,a) min= 1.
path(a,c) min= 2.
path(b,a) min= 2.
path(c,b) min= 2.
path(a,a) min= 3.
path(b,b) min= 3.
path(c,c) min= 3.

We see that fixpoint iteration converges after 4 iterations. The thing to notice

about these charts is that they contain a nonground rule path(I,I) min= 0. What

that means is when we query for the value of path(a,a), for example, two rules in

m(4) contribute to its value giving min(0, 3) = 0.
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Appendix B

Program Transformations
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B.1 Strong Equivalence

Proposition 5. If p(s)
strong
≡ p(t), then p(s) ≡ p(t).

Proof. Fix an arbitrary item x ∈ H.

p(s)JxK =
⊕

δ(s)∈p(s){x}

p(s)
r
δ(s)

z
[Definition 22] (B.1)

=
⊕

δ(s)∈p(s){x}

p(t)
s
ϕ

s→t
(δ(s))

{
[value preserving] (B.2)

=
⊕

δ(t)∈p(t){x}

p(t)
r
δ(t)

z
[bijection] (B.3)

= p(t)JxK [Definition 22] (B.4)

■
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B.2 Correctness of the Fold and Unfold

Transformations

This appendix provides several results that characterize the correctness

of the {basic, generalized} × {unfold, fold} transformations. We have chosen to

give the most detailed correctness proofs for the case of generalized unfold

since the proof of correctness for the generalized fold transformation follows the

same argument. Furthermore, the correctness proofs for basic unfold and fold

transformations (Theorem 4) and Theorem 5) are corollaries of the generalized

unfold proof. The correctness proof for the generalized unfold transformation is

given by two lemmas, Lemma 1 and Lemma 4, that are assembled into the main

theorem: Theorem 2. Lemma 1 provides generalize conditions under which the

derivation mapping ϕ
s→t

(provided in Algorithm 24) is a value-preserving mapping.

Then, Lemma 4 demonstrates that ϕ
t→s

(provided in Algorithm 32) is the inverse

of ϕ
s→t

. Analogous results are provided for the generalized fold transformation.

We remind the reader that the conditions provided here are not easy to verify

(§7.4.2.3). A set of practical sufficient conditions are provided in §7.4.2.4.

Overview. An overview of the results is given below.
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unfold fold

Derivation mapping ( ϕ
s→t

)

Algorithm Algorithm 24 Algorithm 25

ϕ
s→t

is a value-preserving mapping Lemma 1 Lemma 5

Inverse derivation mapping ( ϕ
t→s

)

Algorithm Algorithm 31 Algorithm 32

ϕ
t→s

is the inverse of ϕ
s→t

Lemma 4 Lemma 6

Semantics-preserving

basic Theorem 4 Theorem 5

generalized (impractical) Theorem 2 Theorem 3

generalized (practical) Theorem 1

Additional definitions. Some of our proofs make use of the following

ordering relation on derivations:

Definition 43. We define the subtree-ordering relation. Let δ, δ′ ∈ p{·} be

derivations (of possibly different items). We say that δ′ ≺
subtree

δ if and only if δ′ is a

(strict) subtree of δ.
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Lemma 1. Suppose

A1 p(s)
unfold d,j

r→S−−−−−→ p(t)

A2 p(s)
strong
≡ p(d)

A3 the method ϕ
s→t

: p(s){·} → p(t){·} specified in Algorithm 24 always termi-

nates.

Then, ϕ
s→t

satisfies the following, ∀δ(s) ∈ p(s){·}:

C1 ϕ
s→t

(
δ(s)
)

exists

C2 ϕ
s→t

(
δ(s)
)
∈ p(t){x}

C3

s
ϕ

s→t

(
δ(s)
){

=
r
δ(s)

z
.

where x is the root label of δ(s).

Proof. Our correctness argument uses induction on the ordering ≺
steps

over p(s){·}.

Since ϕ
s→t

terminates by A3 and it is a side-effect-free deterministic proce-

dure, there exists a finite number of steps per call to ϕ
s→t

. Let steps

{
ϕ

s→t
(δ)

}
be the number of steps when ϕ

s→t
is run on δ. The ordering relation ≺

steps
is

defined as follows: δ′ ≺
steps

δ ⇐⇒ steps

{
ϕ

s→t
(δ′)

}
< steps

{
ϕ

s→t
(δ)

}
. We may

assume that every function call has a positive overhead cost so that no sub-

routine call can have zero cost; this ensures that ≺
steps

is irreflexive. Clearly,

if ϕ
s→t

(δ) recursively calls ϕ
s→t

(δ′) (i.e., ϕ
s→t

(δ′) is a subroutine of ϕ
s→t

(δ)), and

A3 holds, then δ′ ≺
steps

δ. Furthermore, ≺
steps

is a well-founded ordering on
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ϕ
s→t

(·) because there are no infinite descending chains of comparison. Thus,

≺
steps

is safe for use in an inductive proof using the principle of Noetherian

induction (Cohn, 1969).

Choose δ(s) ∈ p(s){·} arbitrarily.

Inductive hypothesis:

IH ∀δ′ ≺
steps

δ(s) : ϕ
s→t

(δ′) exists, ϕ
s→t

(δ′) ∈ p(t){x}, and Jδ′K =
s
ϕ

s→t
(δ′)

{
.

Base case: (δ(s) is a constant or builtin): This case is straightforward.

C1 : ϕ
s→t

(
δ(s)
)

def
= δ(s)

C2 : ϕ
s→t

(
δ(s)
)
∈ p(t){·} because constants and builtins are, by Definition 23,

always included in the set of derivations.

C3 :
s
ϕ

s→t

(
δ(s)
){

=
r
δ(s)

z
by definition of the valuation map (Definition 22).

Inductive case: There are three cases to consider:

Case 1 (δ(s) is a product y1 ··· yK ): This case is straightforward. Notice y1 , ... ,
yK ≺

steps

δ(s) because they are subroutines.

C1 : ϕ
s→t

(
y1 ··· yK

)
def
= ϕ

s→t

(
y1

)
··· ϕ

s→t

(
yK

)
C2 :

y1 ··· yK ∈ p(s){y1 ··· yK} =⇒
y1 ∈ p(s){y1}, ... ,

yK ∈ p(s){yK}

IH
=⇒ ϕ

s→t

(
y1

)
∈ p(t){y1}, ... , ϕ

s→t

(
yK

)
∈ p(t){yK}

=⇒ ϕ
s→t

(
y1 ··· yK

)
∈ p(t){y1 ··· yK}
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C3 :
s
ϕ

s→t

(
y1 ··· yK

){
=

s
ϕ

s→t

(
y1

)
··· ϕ

s→t

(
yK

){
IH
=

s
y1 ··· yK

{

Case 2 (top rule of δ(s) is in p(t)): This case is straightforward. Observe that

µ ≺
steps

δ(s) because it is a subroutine.

C1 : ϕ
s→t


x

µ

 def
=

x

ϕ
s→t

(
µ

)

C2 : Since, the top rule of δ(t) = ϕ
s→t

(
δ(s)
)

is a specialization of a rule in p(t)

and its subtrees are in p(t){·} by IH , then δ(t) ∈ p(t){x}.

C3 :

u

ww
v ϕ

s→t


x

µ


}

��
~ =

u

wwww
v

x

ϕ
s→t

(
µ

)
}

����
~

IH
=

u

ww
v

x

µ

}

��
~ =

r
δ(s)

z

Case 3 (top rule of δ(s) is not in p(t)): By Definition 35, the derivation δ(s) must

have the form:

δ(s) =

x

βyjα

We now unfold the derivation yj :

〈
µ
,T(ℓ)

〉
= u

(
yj

)
. This step is re-

quired for the (distinct) replacement rule T(ℓ) ∈ S to fire in the transformed

derivation (below). Observe that α
,

µ
,

β ≺
steps

δ(s) because they are subrou-

tines.

C1 : ϕ
s→t


x

βyjα

 def
=

x

ϕ
s→t

(
α

)
ϕ

s→t

(
µ

)
ϕ

s→t

(
β

)
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C2 : Lemma 2 guarantees that the remapped tree µ ∈ p(s){µ}. Further-

more, the replacement rule T(ℓ) ∈ S is a (distinct) rule in p(t) of the

form x⊕=α µ β. Now, since ϕ
s→t

(
α

)
, ϕ
s→t

(
µ

)
, ϕ
s→t

(
β

)
∈ p(t){x} by

IH , it follows that δ(t) ∈ p(t){x}.
C3 :

u

ww
v ϕ

s→t


x

βyjα


}

��
~

=

t

ϕ
s→t

(
α

)| s
ϕ

s→t

(
u

(
yj

)){ t

ϕ
s→t

(
β

)|

[by C1 ]

=

t
α

| s
u

(
yj

){ t
β

|

[by IH ]

=

t
α

| s
yj

{ t
β

|

[by Lemma 2]

=
r
δ(s)

z

■
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Lemma 2. Suppose u is called by Algorithm 24 with p(s)
unfold d,j

r→S−−−−−→ p(t) and

δ(s) =

x

βyjα

where the top rule of δ(s) is the rule to be unfolded r. Then,

〈
µ
,T(ℓ)

〉
← u

(
yj

)
has the following properties:

C1
µ ∈ p(s){·}

C2

t
µ

|

=

s
yj

{

C3 T(ℓ) ∈ p(t) and T(ℓ) has the form x⊕=α µ β

Proof sketch. Conclusions C1 and C2 are obvious consequences of p(s)
strong
≡ p(d)

(assumed by the calling context).

C3 : By the construction of the unfold transformation (Definition 35), we know

that r has the form x⊕=α yj β. By inspecting Definition 35, we can see

that the rule T(ℓ) must be of the form x⊕=α µ β for some µ. The transfor-

mation replaces the item yj with the various bodies of the defining rules

from p(d). Furthermore, when we know the definition rule D(ℓ) that was

used, we know which rule in p(t) replaced r. Specifically, T(ℓ) = σ
d→t

(D(ℓ)) us-

ing the one-to-one alignment σ
d→t

(described in Definition 35). Any variable

bindings have already been propagated when unfold created T(ℓ).

■
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Lemma 3. The method u−1 correctly implements the inverse of u.

Proof (Sketch). Our argument is that u−1 inverts u by working backwards from

the output of u and inverting each line one-at-a-time.220

Suppose the calling context has δ(s) with top rule T(ℓ) ∈ S. Thus, T(ℓ) has the

form x⊕=α µ β and the unfolded rule r has the form x⊕=α yj β.

The only tricky part of inverting u is that we have to reconstruct the inter-

mediate item yj that u erased on line 24.13. Fortunately, there is just enough

information in the transformation to reconstruct it from the identity of T(ℓ).

The generalized unfold transformation (Definition 35) is careful to ensure this is

possible by tracking the alignment σ
d→t

.

The way that line 25.15 manages to reconstruct the erased item is as follows:

We look up the distinct unfolder rule D(ℓ) ∈ p(d) that was used to create T(ℓ)

during the generalized unfold transformation (Definition 35). We have D(ℓ) =

σ
t→d

(T(ℓ)). Furthermore, T(ℓ) must be of the form y′⊕=µ′. Now, an intermediate

subtree must exist (that unfold erased on line 24.13), built from an instantiation

of the rule D(ℓ). To build this node, we determine the substitution that makes the

folder’s body µ′ θ = µ. We can determine a unique substitution θ = cover(µ′,µ).

We can now determine the name yj of the missing intermediate item yj = θ(y′).

The remaining operations are correct by the assumption that p(s)
strong
≡ p(d). ■

220Recall that if h(x) = f(g(x)), then h−1(x) = g−1(f−1(x)) (assuming these inverses exist).
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Algorithm 31 Inverse derivation mapping for p(s)
unfold d,j

r→S−−−−−→ p(t).

1. ▷ The comments at the top of Algorithm 24 apply here as well.

2. def ϕ
t→s

(
δ(t)
)

: ▷ Inverse derivation mapping

3. case constant or builtin: return δ(t)

4. case
y1 ···

yK : return ϕ
t→s

(
y1

)
··· ϕ

t→s

(
yK

)

5. case


x

µ

 and its top rule ∈ p(s): return

x

ϕ
t→s

(
µ

)

6. case


x

βµα

 and its top rule /∈ p(s): ▷ Top rule must be in S

7. return

x

ϕ
t→s

(
α

)
u−1

(
ϕ

t→s

(
µ

))
ϕ

t→s

(
β

) ▷ The top rule of the transformed deriva-
tion is r

Algorithm 32 Inverse derivation mapping for p(s)
fold d,j

S→r−−−−→ p(t).

1. ▷ The comments at the top of Algorithm 24 apply here as well.

2. def ϕ
t→s

(
δ(t)
)

: ▷ Inverse derivation mapping

3. case constant or builtin: return δ(t)

4. case
y1 ···

yK : return ϕ
t→s

(
y1

)
··· ϕ

t→s

(
yK

)

5. case


x

µ

 and its top rule ∈ p(s): return

x

ϕ
t→s

(
µ

)

6. case


x

βyjα

 and its top rule /∈ p(s): ▷ Top rule must be r

7. return

x

ϕ
t→s

(
α

)
u

(
ϕ

t→s

(
yj

))
ϕ

t→s

(
β

) ▷ The top rule of the transformed deriva-
tion is given by the call to u
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Lemma 4. Suppose

A1 p(s)
unfold d,j

r→S−−−−−→ p(t)

A2 p(s)
strong
≡ p(d)

A3 ϕ
s→t

: p(s){·} → p(t){·} is the partial221 function specified in Algorithm 24.

Then, ∀δ(t) ∈ p(t){·} : ∃! δ(s) ∈ p(s){·} : ϕ
s→t

(
δ(s)
)
= δ(t). Furthermore, the function

ϕ
t→s

specified in Algorithm 31 computes δ(s) = ϕ
t→s

(
δ(t)
)

.

Proof. Our proof uses induction on ≺
subtree

over p(t){·}.222 Fix an arbitrary δ(t) ∈

p(t){·}.

Inductive hypothesis:

IH ∀δ(t)
1 ≺

subtree
δ(t) : ∃!δ(s)

1 ∈ p(s){·} : ϕ
s→t

(δ
(s)
1 ) = δ

(t)
1 . Furthermore, δ

(s)
1 =

ϕ
t→s

(
δ
(t)
1

)
.

Base case: (δ(t) is a constant or builtin): This case is straightforward.

We seek to identify all δ(s) that satisfy the following equation:

δ(t) = ϕ
s→t

(
δ(s)
)

It is clear from the implementation of ϕ
s→t

(see line 24.5) that δ(t) has this form is

if and only if

δ(t) = δ(s)

221Here, we take nontermination on a given input to mean that the function is undefined on it.
222The fact that we call pull off the induction on an ordering ( ≺

subtree
) that is guaranteed to be

well-founded without additional assumptions is why ϕ
t→s

is a total function and why ϕ
s→t

is only

guaranteed to be a partial function. The induction scheme used in the proof of Lemma 1
required us to stipulate that ϕ

s→t
terminates to perform induction in the number of steps

performed by Algorithm 24.
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This is clearly a unique solution. Furthermore, δ(s) = ϕ
t→s

(
δ(t)
)
= δ(t).

Inductive case: As one might expect, the construction of ϕ
t→s

essentially inverts

each step of the construction of ϕ
s→t

. Thus, there are three analogous cases to

consider as in Lemma 1:

Case 1 (δ(t) is a product y1 ··· yK ): This case is straightforward.

We seek to identify all δ(s) that satisfy the following equation:

δ(t) =
y1 ··· yK = ϕ

s→t

(
δ(s)
)

It is clear from the implementation of ϕ
s→t

(see line 24.6) that δ(t) has this

form is if and only if

y1 ··· yK = ϕ
s→t

(
y1

)
··· ϕ

s→t

(
yK

)

Now, by IH , we have that for each k ∈ [1:K] : ∃! δ(s)
k :

yk = ϕ
s→t

(
δ
(s)
k

)
; and,

furthermore, that δ(s)
k = ϕ

t→s

(
yk

)
. Therefore, the equation δ(t) = ϕ

s→t

(
δ(s)
)

has exactly one solution for δ(s). Furthermore,

δ(s) = δ
(s)
1 ··· δ(s)

K = ϕ
t→s

(
y1

)
··· ϕ

t→s

(
yK

)
= ϕ

t→s

(
δ(t)
)

Case 2 (top rule of δ(t) ∈ p(s)): This case is straightforward.

We seek to identify all δ(s) that satisfy the following equation:

δ(t) =

x

µ
= ϕ

s→t

(
δ(s)
)
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It is clear from the implementation of ϕ
s→t

(see line 24.7) that δ(t) has this

form is if and only if
x

µ
=

x

ϕ
s→t

(
µ

)

Now, by IH , we have that ∃!δ(s)
1 :

µ
= ϕ

s→t

(
δ
(s)
1

)
; and, furthermore, that

δ
(s)
1 = ϕ

t→s

(
µ

)
. From line 24.7, it is clear that the top rule must be the

same in δ(s) and δ(t); therefore, the equation δ(t) = ϕ
s→t

(
δ(s)
)

has exactly one

solution for δ(s). Furthermore,

δ(s) = ϕ
t→s


x

µ

 def
=

x

ϕ
t→s

(
µ

)

Case 3 (top rule of δ(t) /∈ p(s)):

We seek to identify all δ(s) that satisfy the following equation:

δ(t) =

x

βµα = ϕ
s→t

(
δ(s)
)

It is clear from the implementation of ϕ
s→t

(see line 24.9) that δ(t) has this

form is if and only if

x

βµα =

x

ϕ
s→t

(
α

)
ϕ

s→t

(
u

(
yj

))
ϕ

s→t

(
β

)
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By IH , we have unique solutions to the following equations:

α
= ϕ

s→t

(
δ
(s)
0

)
;

µ
= ϕ

s→t

(
δ
(s)
1

)
;

β
= ϕ

s→t

(
δ
(s)
2

)

Furthermore, those solutions are given by ϕ
t→s

:

ϕ
t→s

(
α

)
= δ

(s)
0 ; ϕ

t→s

(
µ

)
= δ

(s)
1 ; ϕ

t→s

(
β

)
= δ

(s)
2

Next, we solve δ
(s)
1 = u

(
δ
(s)
3

)
. According to Lemma 3, this equation has a

unique solution that is computed by δ
(s)
3 = u−1

(
δ
(s)
1

)
with line 25.7. Lastly,

we have that the unique solution δ(s) is given by

δ(s) = ϕ
t→s


x

βµα

 def
=

x

ϕ
t→s

(
α

)
u−1

(
ϕ

t→s

(
µ

))
ϕ

t→s

(
β

)

■
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Theorem 2. Given p(s)
unfold d,j

r→S−−−−−→ p(t) and p(s)
strong
≡ p(d). Suppose the function

ϕ
s→t

(
δ(s)
)

, as specified in Algorithm 24, terminates for all δ(s) ∈ p(s){·}. Then, ϕ
s→t

is

a value-preserving bijection between p(s){·} and p(t){·}. Furthermore, p(s)
strong
≡ p(t).

Proof. Under the above conditions, it follows from Lemma 1 and Lemma 4 that

ϕ
s→t

is a value-preserving bijection between p(s){·} and p(t){·}. Such a bijection

ensures that p(s)
strong
≡ p(t) by Definition 31. ■
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Lemma 5. Suppose

A1 p(s)
fold d,j

S→r−−−−→ p(t)

A2 p(s)
strong
≡ p(d)

A3 the method ϕ
s→t

: p(s){·} → p(t){·} specified in Algorithm 25 always termi-

nates.

Then, ϕ
s→t

satisfies the following,∀δ(s) ∈ p(s){·}:

C1 ϕ
s→t

(
δ(s)
)

exists

C2 ϕ
s→t

(
δ(s)
)
∈ p(t){x}

C3

s
ϕ

s→t

(
δ(s)
){

=
r
δ(s)

z
.

where x is the root label of δ(s).

Proof. Our correctness argument uses induction on the ordering ≺
steps

over p(s){·}

that we defined in the proof of Lemma 1.

Choose δ(s) ∈ p(s){·} arbitrarily.

Inductive hypothesis:

IH ∀δ′ ≺
steps

δ(s) : ϕ
s→t

(δ′) exists, ϕ
s→t

(δ′) ∈ p(t){x}, and Jδ′K =
s
ϕ

s→t
(δ′)

{
.

Base case: (δ(s) is a constant or builtin): This case is exactly the same as in

the proof of Lemma 1.

Inductive case: There are three cases to consider:

Case 1 (δ(s) is a product y1 ··· yK ): This case is exactly the same as in the proof

of Lemma 1.
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Case 2 (top rule of δ(s) is in p(t)): This case is exactly the same as in the proof of

Lemma 1.

Case 3 (top rule of δ(s) is not in p(t)): The derivation δ(s) must have the following

form with top rule S(ℓ) ∈ S:

δ(s) =

x

βµα

We now fold the derivation µ : u−1

(
µ
,S(ℓ)

)
=

yj . Observe that α
,

yj ,
β ≺

steps

δ(s) because they are subroutines.

C1 : ϕ
s→t


x

βµα

 def
=

x

ϕ
s→t

(
α

)
ϕ

s→t

(
yj

)
ϕ

s→t

(
β

)
= δ(t)

C2 : Lemma 3 guarantees that the remapped tree yj ∈ p(s)
{

yj

}
. Further-

more, the folder rule r is a (distinct) rule in p(t) of the form x⊕=α yj β.

Now, since ϕ
s→t

(
α

)
, ϕ
s→t

(
yj

)
, ϕ
s→t

(
β

)
∈ p(t){x} by IH , it follows that

δ(t) ∈ p(t){x}.
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C3 :
u

ww
v ϕ

s→t


x

βµα


}

��
~

=

t

ϕ
s→t

(
α

)| t

ϕ
s→t

(
u−1

(
µ

))| t

ϕ
s→t

(
β

)|

[by C1 ]

=

t
α

| t

u−1

(
µ

)| t
β

|

[by IH ]

=

t
α

| s
yj

{ t
β

|

[by Lemma 3]

=
r
δ(s)

z

■
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Lemma 6. Suppose

A1 p(s)
fold d,j

S→r−−−−→ p(t)

A2 p(s)
strong
≡ p(d)

A3 ϕ
s→t

: p(s){·} → p(t){·} is the partial function specified in Algorithm 25.

Then, ∀δ(t) ∈ p(t){·} : ∃! δ(s) ∈ p(s){·} : ϕ
s→t

(
δ(s)
)
= δ(t). Furthermore, the function

ϕ
t→s

specified in Algorithm 32 computes δ(s) = ϕ
t→s

(
δ(t)
)

.

Proof. Our proof uses induction on ≺
subtree

over p(t){·}. All but one of the cases in

this proof are identical to Lemma 4. Fix an arbitrary δ(t) ∈ p(t){·}.

Inductive hypothesis:

IH ∀δ(t)
1 ≺

subtree
δ(t) : ∃!δ(s)

1 ∈ p(s){·} : ϕ
s→t

(δ
(s)
1 ) = δ

(t)
1 . Furthermore, δ

(s)
1 =

ϕ
t→s

(
δ
(t)
1

)
.

Base case: (δ(t) is a constant or builtin): Same as the proof of Lemma 4.

Inductive case: As one might expect, the construction of ϕ
t→s

essentially inverts

each step of the construction of ϕ
s→t

. Thus, there are three analogous cases to

consider as in Lemma 5:

Case 1 (δ(t) is a product y1 ··· yK ): Same as the proof of Lemma 4.

Case 2 (top rule of δ(t) ∈ p(s)): Same as the proof of Lemma 4.

Case 3 (top rule of δ(t) /∈ p(s)):
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We seek to identify all δ(s) that satisfy the following equation:

δ(t) =

x

βyjα = ϕ
s→t

(
δ(s)
)

It is clear from the implementation of ϕ
s→t

(see line 25.7) that δ(t) has this

form is if and only if

x

βyjα =

x

ϕ
s→t

(
α

)
ϕ

s→t

(
u−1

(
µ

))
ϕ

s→t

(
β

)

By IH , we have unique solutions to the following equations:

α
= ϕ

s→t

(
δ
(s)
0

)
;

yj = ϕ
s→t

(
δ
(s)
1

)
;

β
= ϕ

s→t

(
δ
(s)
2

)

Furthermore, those solutions are given by ϕ
t→s

:

ϕ
t→s

(
α

)
= δ

(s)
0 ; ϕ

t→s

(
yj

)
= δ

(s)
1 ; ϕ

t→s

(
β

)
= δ

(s)
2

Next, we solve δ
(s)
1 = u−1

(
δ
(s)
3

)
. According to Lemma 3, this equation has a

unique solution that is computed by δ
(s)
3 = u−1

(
δ
(s)
1

)
with line 25.7. Lastly,

we have that the unique solution δ(s) is given by

δ(s) = ϕ
t→s


x

βyjα

 def
=

x

ϕ
t→s

(
α

)
u

(
ϕ

t→s

(
yj

))
ϕ

t→s

(
β

)

■
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Theorem 3. Given p(s)
fold d,j

S→r−−−−→ p(t) and p(s)
strong
≡ p(d). Suppose the function ϕ

s→t

(
δ(s)
)

,

as specified in Algorithm 25, terminates for all δ(s) ∈ p(s){·}. Then, ϕ
s→t

is a value-

preserving bijection between p(s){·} and p(t){·}. Furthermore, p(s)
strong
≡ p(t).

Proof. Under the above conditions, it follows from Lemma 5 and Lemma 6 that

ϕ
s→t

is a value-preserving bijection between p(s){·} and p(t){·}. Such a bijection

ensures that p(s)
strong
≡ p(t) by Definition 31. ■
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Theorem 4. Suppose p(s)
unfold−−→ p(t) according to Definition 33, then p(s)

strong
≡ p(t).

Proof. Any basic unfold transformation is an instance of a generalized unfold

transformation with p(d) = p(s). Thus, it inherits the correctness proof for the

generalized unfold transformation (Theorem 2). We can strengthen the claim:

all basic unfold transformations are semantics-preserving because we can drop

Theorem 2’s stipulation that the derivation mapping (Algorithm 24) terminates

as it is always true for basic unfold transformations. To see why, we observe

that the call to u always returns a (strict) subtree of the δ(s), and subtrees are

a well-founded order. Thus, ϕ
s→t

is guaranteed to terminate for any basic unfold

transformation. ■

Theorem 5. Suppose p(s)
fold−→ p(t) according to Definition 34, then p(s)

strong
≡ p(t).

Proof. Theorem 4 establishes a symmetrical result, which we can leverage here.

Definition 34 requires reversibility: p(t)
unfold t,j

r→S−−−−−→ p(s). Since p(t)
unfold t,j

r→S−−−−−→ p(s)

implies p(t)
strong
≡ p(s) (by Theorem 4) and semantic equivalence is symmetric, it

follows that fold s,j
S→r is also semantics-preserving because any transformation

from p(s) to p(t) (or vice versa) would be semantics-preserving under the condition

that a strongly equivalent transformation relates p(t) and p(s). ■
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B.3 Speculation

We provide a derivation mapping as an (incomplete) justification for the

correctness of the speculation transformation (Definition 41). To complete the

proof of correctness, we would need to prove that this derivation mapping is a

bijective value-preserving mapping (as we did in our proofs of correctness for fold

and unfold in §B.2). This should be a fairly straightforward argument to make

by structural induction (on the subtree relation); however, we do not provide

such an argument.
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Algorithm 33 Derivation mapping for p(s)
speculationz,σ−−−−−−→ p(t).

1. def ϕ
s→t

(
δ(s)
)

:

2. case δ(s) is a builtin or constant: return δ(s)

3. case y1 ··· yK : return ϕ
s→t

(
y1

)
··· ϕ

s→t

(
yK

)

4. case

 x

µ

 and the top rule /∈ σ: ▷ Bottom of the spine

return

x

x̃

ϕ
s→t

(
µ

) x/x

1
if x ⊆ z else

x

x̃

ϕ
s→t

(
µ

)

5. case

 x

βy

 and top rule ∈ σ:

6. match ϕ
s→t

(
y
)

:

7. case
y

ỹ : return

x

x̃

z̃
ϕ

s→t

(
β

)

8. case
y

y/zz̃ : return

x

z̃
x/z

y/z

ϕ
s→t

(
β

)
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Appendix C

Pattern Matching Algorithms

C.1 Unification

In this section, we describe algorithms for unification, which we briefly

described in §3.1.1.223 Much has been written about unification (Herbrand,

1930; Robinson, 1965; Knight, 1989; Norvig, 1991; Martelli and Montanari,

1982) so we will not talk too much about the algorithm—we have primarily

included it for completeness. Our implementation of explicit unification unify is

given in Algorithm 34; it closely follows the pseudocode from the textbook of

Russell and Norvig (2020). Overall, the algorithm is a relatively straightforward

recursive procedure that simultaneously traverses a pair of terms from the

top down, acquiring the minimal set of variable bindings needed to make the

terms equal (or failing if equality is impossible). Algorithm 35 provides a “one-

223The implementation in this section uses explicit substitution maps, whereas in §3.1.2.1 the
map is represented implicitly using a mutable data structure.
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sided” unification algorithm (cover) which solves unification problems of the form

θ(x) = y. This algorithm can be used to determine if the set of terms denoted

by x is a superset of those denoted by y: (x ⊇ y) ⇐⇒ (cover(x, y) ̸= FAIL). In the

pseudocode, deref∗(x,θ) recursively applies θ(x) until x /∈ θ.

Algorithm 34 unify: Unification algorithm. Solves any equation of the form
θ(x) = θ(y) for θ given possibly nonground terms x and y.

1. def unify(x, y,θ = {}):
2. if θ = FAIL : return FAIL
3. else if x = y : return θ
4. else if x is a variable :
5. if x ∈ θ : return unify(θ[x], y,θ)
6. else if y ∈ θ : return unify(x,θ[y],θ)
7. else if x occurs in y after substitution θ : return FAIL
8. else
9. θ[x]← y ▷ Mutates θ

10. return θ
11. else if y is a variable : return unify(y,x,θ)
12. else if x and y are terms with the same name and arity:
13. for i ∈ 1 ... |x | : θ ← unify(xi, yi,θ)

14. return θ
15. else
16. return FAIL

Algorithm 35 cover: One-sided unification algorithm. Solves any equation of the
form θ(x) = y for θ given possibly nonground terms x and y.

1. def cover(x, y,θ = {}):
2. x← deref∗(x,θ); y← deref∗(y,θ)
3. if x = y : return θ
4. else if x is a variable :
5. if x ∈ θ :
6. if θ[x] = y : return θ

7. else if x does not occur in θ(y) :
8. θ[x]← y ▷ Mutates θ

9. return θ
10. return FAIL
11. else if x and y are terms with the same name and arity:
12. for i ∈ 1 ... |x | : θ ← cover(xi, yi,θ)

return θ
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C.2 Sub-Product Enumeration

C.2.1 Commutative Sub-Products

Algorithm 36 is a procedure to enumerate alignments between a collection

of subgoals x1 ··· xN to another collection of subgoals y1 ··· yM assuming a is

commutative. The main usage is during folding where x1 ··· xN is the right-hand

side of a folder rule and y1 ··· yM is the right-hand side of a rule that is folded.

For example,

• covers_product(f(X) * f(Y), f(A) * f(B) * f(C)) has six alignments:

⟨{X 7→ A, Y 7→ B} , {0 7→ 0, 1 7→ 1}⟩
⟨{X 7→ A, Y 7→ C} , {0 7→ 0, 1 7→ 2}⟩
⟨{X 7→ B, Y 7→ A} , {0 7→ 1, 1 7→ 0}⟩
⟨{X 7→ B, Y 7→ C} , {0 7→ 1, 1 7→ 2}⟩
⟨{X 7→ C, Y 7→ A} , {0 7→ 2, 1 7→ 0}⟩
⟨{X 7→ C, Y 7→ B} , {0 7→ 2, 1 7→ 1}⟩

• covers_product(f(X,Y), g(Y,Z), f(I,J), g(J,I)) has one alignment:

⟨{X 7→ I, Y 7→ J, Z 7→ K} , {0 7→ 0, 1 7→ 1}⟩

Each iterate is a pair of a substitution map θ and index-to-index alignment

σ. Substitutions maps θ and alignment σ are such that

1. Each alignment σ is a function [1:N ] → [1:M ]; in other words, from the

indices of x to the indices of y.

2. θ(xi) = yσ(i) for i ∈ [1:N ]; like in cover, θ may only bind variables in x.
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Algorithm 36 covers_product: Lazily enumerate commutative matches from a
collection of subgoals x1 ··· xN to another collection of subgoals y1 ··· yM . Each
iterate is a pair of a substitution mapping and an index-to-index alignment.

1. def covers_product(x1 ··· xN , y1 ··· yM ,θ0= {}):
2. def f(i,β,θ):
3. if θ = FAIL : return ▷ Failure
4. else if

∣∣x[i:]

∣∣ > ∣∣ yβ

∣∣ : return ▷ Failure: too many subgoals
5. else if

∣∣x[i:]

∣∣ = 0 : yield ⟨θ, {}⟩ ▷ Success: reached the end of x’s
6. else
7. for j ∈ β :
8. for ⟨θ′,σ′⟩ ∈ f(i+ 1,β ∖ {j} , cover(xi, yj, copy(θ))) :
9. yield ⟨θ′,σ′ ∪ (i→ j)⟩

10. yield from f(1, {1, ...,M} ,θ0)

C.2.2 Noncommutative Sub-Products

Algorithm 37 is a procedure to enumerate subproducts; it will find all the

subproducts x1 ··· xN contained in y1 ··· yM . Unlike the commutative case, no

reordering or gaps in the match are allowed.

Algorithm 37 covers_product: Lazily enumerate non-commutative matches from a
collection of subgoals x1 ··· xN to another collection of subgoals y1 ··· yM . Each
iterate is a pair of a substitution mapping and the start position of the match.

1. def covers_product(x1 ··· xN , y1 ··· yM ,θ= {}):
2. for j ∈ [1:M−N ] :
3. θ′ ← cover(x, y[j+i:j+N ], copy(θ))

4. if θ′ ̸= FAIL : yield ⟨θ′, j⟩
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Appendix D

Dyna 2

We give a brief overview of the Dyna 2 language and thoughts about how to

extend this dissertation’s results to it.

Dyna 2 (Eisner and Filardo, 2011) extends Dyna 1 (cf. § 2) by allowing

values to be combined in more than the two ways that a single semiring allows.

Thus, Dyna 2 program can be used as a concise notation for specifying general

computation graphs224 via rules that are still written in a Prolog-like notation

(as with Dyna 1). Each rule continues to be a template whose variables may be

instantiated with arbitrary terms. The rule instantiations collectively define the

contributions to the values of many items. The contributions are aggregated as

in Dyna 1 with an aggregation operator (aggregator, for short). Dyna programs

support general mathematical expressions (not just semiring operations). A

feed-forward neural network and its training objective can be defined via

224Other notations and libraries for defining computation graphs include Theano (Theano
Development Team, 2016), PyTorch (Paszke et al., 2017), TensorFlow (Abadi et al., 2016), JAX
(Bradbury et al., 2018), and Named Tensor Notation (Chiang, Rush, et al., 2021).
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684 σ(X) = 1/(1+exp(-X)). % define sigmoid function
685 out(J) = σ(in(J)). % apply sigmoid function
686 in(J) += out(I) * edge(I,J). % vector-matrix product
687 loss += (out(J) - target(J))2. % L2 loss}

The structure and weights of the network are specified by defining the values of

items of the form edge(I,J). This could be done by listing one rule per edge, but it

can also be done systematically by writing edge-defining rules in terms of struc-

tured node names, where these names will instantiate I, J above. For example,

688 edge(input(X,Y),hidden(X+DX,Y+DY)) = weight(DX,DY).
689 weight(DX,DY) := random(*,-1,1) for DX:-4..4, DY:-4..4.

defines a convolutional layer with initially random weights225 and a 9× 9 convo-

lution filter. For example, the node named hidden(10,10) has a connection from the

node named input(8,11) with weight weight(-2,1). The input to the network is spec-

ified at runtime by updating the values of out(input(...)); these items otherwise

have no value as the input nodes have no incoming edges.

The Dyna solver seeks a fixed point in which all items are consistent, i.e.,

each item’s value matches its definition from other values. A cyclic program may

not have a unique fixed point. The solver is permitted to choose arbitrarily if

there is more than one. In general, the solver may fail to terminate because

no fixed point exists or because it cannot discover one. Sometimes the solver

terminates only at numerical convergence, as for the geometric series sum

690 a += 1.
691 a += a/2.

Or this program that implements the Babylonian method for numerically

225Each expression random(*,-1,1) names a distinct random variate, since the special argument
* generates a symbol (“gensym”) that is different in each instantiation of the rule. Thus, the
last line defines 81 distinct weights.
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approximating square root: y =
√
x:

692 y := 1. % arbitrary initial value ̸= 0
693 y := 1/2 * (x/y + y).
694 x := 2.

Here the := aggregator is the “last rule wins” aggregator. The top rule specifies

the initialization for fixpoint iteration.

Eisner and Filardo (2011) give a more complete introduction to Dyna 2 with

more complex examples, including message passing in variational inference and

graphical models, constraint propagation in backtracking search, backpropaga-

tion, and Markov chain Monte Carlo.

Extending this Dissertation to Dyna 2

Execution. The naive, semi-naive, and prioritized fixpoint iterations

algorithms in §5 have analogs in the Dyna 2 setting. They have been studied

in Filardo (2017) and to some extent in Eisner and Blatz (2007).226 In settings

where there is a semiring subprogram, any of our execution algorithms could

be used to solve it. That said, the Dyna 2 framework appears to be moving

in the direction of term-rewriting systems as the basis of its execution system

(Francis-Landau et al., 2020).

Type Analysis. Our type analyzer §6.1 can be extended to Dyna 2. The

main difference is that we would need to prove a type for the value that an

item may have since it is no longer homogeneous. In other words, we would

226Eisner and Blatz (2007) described forward chaining for mixed semirings, which covers most
but not all Dyna 2 programs.
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reason about possible value–item pairs. In principle, this should not be a difficult

extension. Our approach to space and time complexity analysis method (§6.3)

should also work in the case of Dyna 2, as the complexity of executing a Dyna 2

program is also proportional to the cost of instantiating its rules. Our program

specialization methods (§6.2) should also work with little modification.

Program Transformations. Although Eisner and Blatz (2007) predate

Dyna 2, they had some foresight in their approach. Essentially, they devised

semiring transformations that could be applied in mixed-semiring programs.

Their trick was simply to be careful to check that there is a locally distributive

property in a program fragment. Essentially our transformations should still

work, but we just need to check for local distributivity. We also note that

Dyna 2 programs will require other kinds of transformations that pull from a

wider range of mathematical rewrites. Such transformations are used in other

computation graph libraries.

Program Optimization by Transform Search. Our transformation

search approach is directly applicable to a transformation search space tailored

to Dyna 2 programs.
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Appendix E

Programs Used for Experiments

E.1 Chains (chain-05, chain-10, bad-chain-05, bad-chain-10) . . . . . 275
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E.2.1 Bilexical Unlabeled (bilexical-unlabeled) . . . . . . . . . . 276

E.2.2 Bilexical Labeled (bilexical-labeled) . . . . . . . . . . . . . 277

E.2.3 Arc Eager (arc-eager) . . . . . . . . . . . . . . . . . . . . . . 277

E.2.4 Split Bilexical Dependency Parsing . . . . . . . . . . . . . . 278

E.2.4.1 Johnson (2007)’s Version (split-head-J) . . . . . . 278

E.2.4.2 Eisner and Blatz (2007)’s Version (split-head-EB) 278
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E.3.2 CKY with 4-ary Productions (cky4) . . . . . . . . . . . . . . 279

E.3.3 CKY with a Fixed Grammar (cky+grammar) . . . . . . . . 280

E.3.4 Tensor Decomposition Parser (tensor-decomp-parser) . . . 281

E.4 Inversion Transduction Grammars (itg) . . . . . . . . . . . . . . . 281
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E.5 Edit Distance (edit) . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

E.6 Bar-Hillel Construction (bar-hillel) . . . . . . . . . . . . . . . . . . 282

E.7 Expectations under a Linear-Chain Conditional Random Field

(chain-expect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

E.8 Intersection of Even and Odd Peano Numbers (even-odd-peano) . 284

E.9 Hidden Markov Models (hmm) . . . . . . . . . . . . . . . . . . . . 285

E.10 Semi-Markov Model (semi-markov) . . . . . . . . . . . . . . . . . . 285

E.11 Shortest Path in a Graph . . . . . . . . . . . . . . . . . . . . . . . . 286

E.11.1 Explicit Path (path-list) . . . . . . . . . . . . . . . . . . . . 286

E.11.2 Start Path (path-start) . . . . . . . . . . . . . . . . . . . . . 286

E.12 Pushdown Automaton with an Explicit Stack (explicit-pda) . . . . 287

E.1 Chains (chain-05, chain-10, bad-chain-

05, bad-chain-10)

Chain structures are common in NLP as they model the interaction between

adjacent words or labels in a sequence (e.g., Lafferty et al. (2001)).

The chain-N programs are adaptations of Example 3,

1 goal += w(X1,X2) * w(X2,X3) * w(X3,X4) * w(X4,X5).

which is for the specific case of length 4, to have length N . The original program’s

degree is N . The optimal degree for chains is 2 regardless of N .

We also have the following examples of bad variable-elimination orderings
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§7.3. Both of the examples below can be sped up to degree 2.

bad-chain-05:

1 goal += gen6(X5) * tmp(X1,X4,X5).
2 tmp(X1,X4,X5) += gen2(X1,X4) * w(X4, X5).
3 gen2(X1,X4) += gen5(X1,X2) * gen4(X2, X4).
4 gen4(X2,X4) += w(X2, X3) * w(X3, X4).
5 gen5(X1,X2) += w(X1, X2).
6 gen6(X5) += w(X5, X6).

bad-chain-10:

1 gen56(X4, X6) += w(X4, X5) * w(X5, X6).
2 gen57(X2) += w(X1, X2).
3 gen59(X4, X7) += gen56(X4, X6) * w(X6, X7).
4 goal += gen124(X3) * gen122(X3).
5 gen124(X3) += gen123(X4) * w(X3, X4).
6 gen123(X4) += gen125(X10) * gen121(X10, X4).
7 gen125(X10) += w(X10, X11).
8 gen122(X3) += gen57(X2) * w(X2, X3).
9 gen121(X10, X4) += gen119(X4, X8) * gen120(X10, X8).

10 gen120(X10, X8) += w(X8, X9) * w(X9, X10).
11 gen119(X4, X8) += gen59(X4, X7) * w(X7, X8).

E.2 Projective Dependency Parsing

This program performs a version of CKY (§E.3) where the non-terminals have

been lexically annotated with their head word. In contrast to CKY’s O(n3) run-

time, the original presentation of this algorithm ran in O(n5) (Collins, 1996). In

subsequent work, Eisner and Satta (1999a) gave a faster version of the algorithm

that runs in O(n4).

E.2.1 Bilexical Unlabeled (bilexical-unlabeled)

1 phrase(I,H,K) += phrase(I,H,J) * phrase(J,H’,K) * score(H ← H’).
2 phrase(I,H’,K) += phrase(I,H,J) * phrase(J,H’,K) * score(H → H’).
3 phrase(I,I,K) += word(I,_,K).
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4 goal(N) += phrase(0,0,N).
5

6 inputs: word(_,_,_); score(_ → _); score(_ ← _).
7 outputs: goal(_).

Degree: 5. Optimal: 4.

E.2.2 Bilexical Labeled (bilexical-labeled)

Extends bilexical-unlabeled with labels (i.e., grammar relations).

1 phrase(I,H,X,K) += phrase(I,H,Y,J) * phrase(J,H’,Z,K) * rewrite(H,Y, H’,Z, H,X).
2 phrase(I,H’,X,K) += phrase(I,H,Y,J) * phrase(J,H’,Z,K) * rewrite(H,Y, H’,Z, H’,X).
3 phrase(I,I,X,K) += rewrite(X,W) * word(I,W,K).
4 goal(N) += phrase(0,0,s,N).
5

6 inputs: word(_,_,_); rewrite(_,_,_,_,_,_); rewrite(_,_).
7 outputs: goal(_).

Degree: 8. Optimal: 7.

E.2.3 Arc Eager (arc-eager)

This benchmark is based on Example 21; please refer to that discussion.

1 β(I,I^0,K) += word(I,K).
2 β(I,I^1,K) += word(I,K).
3 β(I,H^B,K) += β(I,H^B,J) * score(H ← H’) * β(J,H’^0,K).
4 β(I,H^B,K) += β(I,H^B,J) * score(H → H’) * β(J,H’^1,K).
5 goal(N) += β(0,0^0,N).
6

7 inputs: word(_,_); score(_ → _); score(_ ← _).
8 outputs: goal(_).

Degree: 6, Optimal: 3.
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E.2.4 Split Bilexical Dependency Parsing

A split bilexical grammar is one where the headword must combine with all

its right children before any of its left children. Johnson (2007) and Eisner and

Satta (1999a) each gave initial, inefficient algorithms that they show how to

speed up to O(n3). Their initial algorithms are different, so, we have provided

them as separate benchmarks.

E.2.4.1 Johnson (2007)’s Version (split-head-J)

The following program is the initial, inefficient algorithm of Johnson (2007).

1 goal(N) += x(0,V,N).
2

3 % words are duplicated, as in Johnson (2007).
4 l(I,K) += word(left,I,K).
5 r(I,K) += word(right,I,K).
6

7 % l(I, K) is a span with K as the head
8 l(I,K) += x(I,V,J) * score(V ← K) * l(J,K).
9

10 % r(I, K) is a span with I as the head
11 r(I,K) += r(I,J) * score(I → V) * x(J,V,K).
12

13 % J is the head of l(I, J) and J is the head of r(J, K)
14 x(I,J,K) += l(I,J) * r(J,K).
15

16 input: word(_,_,_); score(_ → _); score(_ ← _).
17 output: goal(_).

Degree: 4, Optimal: 3.

E.2.4.2 Eisner and Blatz (2007)’s Version (split-head-EB)

The following program is the initial, inefficient algorithm of Eisner and Blatz

(2007), which we discussed in Example 44.

1 r(I,I,K) += word(I,K). % no right children yet

278



2 r(P,I,K) += r(P,I,J) * arc(P → C) * l(C,J,K). % add right child
3

4 l(P,I,K) += r(P,I,K). % no left children yet
5 l(P,I,K) += l(C,I,J) * arc(C ← P) * l(P,J,K). % add left child
6

7 goal(N) += l(H,0,N).
8

9 inputs: arc(C ← P); arc(P → C); word(_, _).
10 outputs: goal(N).

Degree: 5, Optimal: 3.

E.3 Constituency Parsing

The following programs are variants of CKY (Cocke and Schwartz, 1970;

Younger, 1967; Kasami, 1965; Lange and Leiß, 2009; Eisner and Blatz, 2007;

Tomita, 1985; Tomita, 1991; Johnson, 1989; Baker, 1979; Jelinek, 1985). We

briefly discussed CKY in Example 6 of the main text.

E.3.1 CKY (cky3)

1 β(X,I,K) += γ(X,Y,Z) * β(Y,I,J) * phrase(Z,J,K).
2 β(X,I,K) += γ(X,Y) * β(Y,I,K).
3 β(X,I,K) += γ(X,Y) * word(Y,I,K).
4 z += β(root, 0, N) * len(N).
5 input: word(W,I,K); len(N); γ(X,Y,Z); γ(X,Y).
6 output: z.

Degree: 6, Optimal: 5.

E.3.2 CKY with 4-ary Productions (cky4)

The following program implements Tomita (1985)’s algorithm where the

grammar can have a production rule of length up to 4. It is a simple modification
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to CKY4. We just add the following rule and input declaration.

7 phrase(X,I1,I4) += γ(X,Y1,Y2,Y3) * phrase(Y1,I1,I2) * phrase(Y2,I2,I3)
8 * phrase(Y3,I3,I4).
9 input: γ(X,Y1,Y2,Y3)

Degree: 7, Optimal: 6.

E.3.3 CKY with a Fixed Grammar (cky+grammar)

For CKY+grammar, we use CKY3, but we remove the input declaration for γ

and declare the following grammar for the program to specialize to.

10 γ("S", "NP", "VP") += 1.0.
11 γ("NP", "Det", "N") += 1.0.
12 γ("NP", "NP", "PP") += 1.0.
13 γ("VP", "V", "NP") += 1.0.
14 γ("VP", "V") += 1.0.
15 γ("VP", "VP", "PP") += 1.0.
16 γ("PP", "P", "NP") += 1.0.
17 γ("<.>", ".") += 1.0.
18 γ("NP", "Papa") += 1.0.
19 γ("N", "caviar") += 1.0.
20 γ("N", "spoon") += 1.0.
21 γ("N", "fork") += 1.0.
22 γ("N", "telescope") += 1.0.
23 γ("N", "boy") += 1.0.
24 γ("N", "girl") += 1.0.
25 γ("N", "baby") += 1.0.
26 γ("N", "man") += 1.0.
27 γ("N", "woman") += 1.0.
28 γ("N", "moon") += 1.0.
29 γ("N", "cat") += 1.0.
30 γ("V", "ate") += 1.0.
31 γ("V", "saw") += 1.0.
32 γ("V", "fed") += 1.0.
33 γ("V", "said") += 1.0.
34 γ("V", "jumped") += 1.0.
35 γ("P", "with") += 1.0.
36 γ("P", "over") += 1.0.
37 γ("P", "under") += 1.0.
38 γ("P", "above") += 1.0.
39 γ("P", "below") += 1.0.
40 γ("P", "on") += 1.0.
41 γ("P", "in") += 1.0.

Degree: 6, Optimal: 3.
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E.3.4 Tensor Decomposition Parser (tensor-decomp-

parser)

The following program is a variation on CKY where the grammar (i.e.,

the rewrite relation) is factored: rewrite(X,Y,Z) += λ(R) * u(R, X) * v(R, Y) * w(R, Z).

This approach was proposed by Cohen, Satta, et al. (2013) whereby the gram-

mar was approximated using low-rank tensor decomposition and subsequently

parsed with the algorithm below. However, the algorithm below can be sped up

by exploiting the structure of the rewrite relation.

1 rewrite(X,Y,Z) += λ(R) * u(R,X) * v(R,Y) * w(R,Z).
2 β(I,K,X) += β(I,J,Y) * β(J,K,Z) * rewrite(X,Y,Z).
3 β(I,K,X) += word(I,K,X).
4 goal += β(0,N,s) * length(N).
5

6 inputs: λ(R); u(R,X); v(R,Y); w(R,Z); word(I,K,X); length(_).
7 outputs: goal.

Degree: 6, Optimal: 4.

E.4 Inversion Transduction Grammars

(itg)

Inversion transduction grammars were introduced by Wu (1996), who gave

an O(n7) algorithm, which was later sped up to O(n6) by Huang, Zhang, et al.

(2005). The model simultaneously parses a pair of related sentences—typically

a target language sentence and a source language sentence, as in machine

translation. The model allows for a restricted syntactic reordering of phrases
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called inversion.

1 β(A,I1,K1,I2,K2) += word1(X,I1,K1) * word2(X’,I2,K2) * transduce(A,X,X’).
2 β(A,I1,K1,I2,K2) += β(B,I1,J1,I2,J2) * β(C,J1,K1,J2,K2) * rewrites(A,B,C).
3 β(A,I1,K1,I2,K2) += β(B,J1,K1,I2,J2) * β(C,I1,J1,J2,K2) * rewritesinv(A,B,C).
4 goal += β(s,0,N1,0,N2) * length(N1,N2).
5

6 inputs: word1(_,_,_); word2(_,_,_); transduce(_,_,_); rewrites(_,_,_);
7 rewritesinv(_,_,_); length(_,_).
8 output: goal.

Degree: 9, Optimal: 8.

E.5 Edit Distance (edit)

The following program implements a weighted generalized monotonic align-

ment between two sequences word and word’. It is essentially the well-known

Levenstein distance (Levenshtein, 1966).

1 align(0,0) min= 1.
2 align(J,J’) min= align(I,I’) * word(W,I,J) * word’(W’,I’,J’) * score(W,W’).
3 align(I,J’) min= align(I,I’) * word’(W’,I’,J’) * score(ε,W’).
4 align(J,I’) min= align(I,I’) * word(W,I,J) * score(W,ε).
5 goal min= align(N,N’) * len(N) * len’(N’).
6 input: word(_,_,_); word’(_,_,_); score(_,_); len(_); len’(_).
7 output: goal.

Degree 6, Optimal: 4.

E.6 Bar-Hillel Construction (bar-hillel)

The following program implements a parser for the (weighted) intersection of

a context-free parser and a bigram model on the part-of-speed sequences. It is

essentially Bar-Hillel et al. (1961)’s construction of a context-free language that

accepts the intersection of a regular language and a context-free language.
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1 goal += β(0,_,root,_,N) * len(N).
2 β(I,A,X,D,K) += β(I,A,Y,B,J) * β(J,C,Z,D,K) * γ(X,Y,Z) * bigram(B,C).
3 β(I,X,X,X,K) += tag(X,W) * word(W,I,K).
4 input: len(_); word(_,_,_); bigram(_,_); γ(_,_,_); tag(_,_).
5 output: goal.

Degree 10, Optimal: 8.

E.7 Expectations under a Linear-Chain

Conditional Random Field (chain-

expect)

This example implements the inside-outside speedup (Li and Eisner, 2009) for

computing the expectation of an additively decomposable function f : S× S′ → Rd

over randomly drawn sequences from a weighted graph (e.g., a conditional

random field (Lafferty et al., 2001)). The graph is specified as a collection of

weights w, as well as start and end nodes. The relations α and β implement

the forward-backward algorithm (discussed in Rabiner (1989)), and z is the

normalization constant of the distribution. The expectation of the ith dimension

of f is fbar(I)/z.

1 % forward algorithm
2 α(S) += start(S).
3 α(S’) += α(S) * w(S,S’).
4 % backward algorithm
5 β(S) += end(S).
6 β(S) += w(S,S’) * β(S’).
7 % normalization constant
8 z += α(S) * end(S).
9 % unnormalized expected value via inside-outside speedup

10 fbar(R) += α(S) * w(S,S’) * β(S’) * r(S,S’,R).
11 input: w(_,_); r(_,_,_); start(_); end(_).
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12 output: fbar(_). z.

Degree 3, Optimal: 3.

E.8 Intersection of Even and Odd Peano

Numbers (even-odd-peano)

The following program counts the number of Peano numbers that are both

even and odd. No such numbers exist, but as the program is written, fixpoint

iteration will enumerate the even and odd numbers forever. Thus, its running

time is infinite. However, it is possible to transform this program into a version

that runs in constant time using fold/unfold and define; the optimal program is

the empty program.

1 % even peano numbers
2 even(0).
3 even(s(s(X))) += even(X).
4

5 % odd peano numbers
6 odd(X) += even(s(X)).
7

8 % intersection
9 evenodd(X) += even(X) * odd(X).

10

11 % size of the intersection
12 goal += evenodd(X).
13

14 output: goal.

Degree: 1, Optimal: 0.
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E.9 Hidden Markov Models (hmm)

Hidden Markov models (HMMs) are the generative and locally normalized

analog of CRFs, which are discussed in §E.7. Rabiner (1989) provides a classic

tutorial.

1 v(0,start) += 1.
2 v(T’,Y’) += v(T,Y) * emission(Y,X) * transition(Y,Y’) * obs(T,X,T’).
3 goal += v(N,stop) * len(N).
4 input: obs(_,_,_); len(_); emission(_,_); transition(_,_).
5 output: goal.

Degree 5, Optimal: 4.

E.10 Semi-Markov Model (semi-markov)

The semi-Markov model (Sarawagi and Cohen, 2004) generalizes a Markov

model to score spans rather than individual words. In terms of runtime, one can

perform inference in a Markov model in O(n) time (omitting dependence on the

number of tags). In contrast, inference in a semi-Markov model takes O(n2).

1 β(start, 0) += 1.
2 β(Y, J) += β(X, I) * transition(X, Y) * chunk(Y, I, J).
3 goal += β(_, N) * len(N).
4 input: transition(_,_); chunk(_, _, _); len(_).
5 output: goal.

Degree 4, Optimal: 3.
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E.11 Shortest Path in a Graph

E.11.1 Explicit Path (path-list)

The code below was previously discussed in Example 28. This example is

interesting because its initial running time is infinite, but it can be sped up to

O(n2) where n is the number of nodes in the graph. This example requires either

generalized fold/unfold or the left-corner transformation (Example 46)

1 β([X,Y|Xs]) += edge(X,Y) * β([Y|Xs]).
2 β([X]) += stop(X).
3 goal += start(X) * β([X|Xs]).
4

5 outputs: goal.
6 inputs: start(_); edge(_,_); stop(_).

E.11.2 Start Path (path-start)

The code below was previously discussed in Example 27. Here we speed up

an initial O(n3) program to O(n2) where n is the number of nodes in the graph.

This example requires generalized fold/unfold.

1 path(I,I).
2 path(I,K) += path(I,J) * edge(J,K).
3

4 goal += start(I) * path(I,K) * stop(K).
5

6 outputs: goal.
7 inputs: start(_); edge(_,_); stop(_).
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E.12 Pushdown Automaton with an Ex-

plicit Stack (explicit-pda)

The program below can, in principle, be converted into CKY. However, doing

so requires program transformations that appear to go beyond those in our

arsenal.

1 pda([],0). % initial stack is empty
2 pda([X|Xs],K) += pda(Xs,J) * rewrite(X,Y) * word(Y,J,K). % shift
3 pda([X|Xs],K) += pda([Z,Y|Xs],K) * rewrite(X,Y,Z). % reduce
4 goal += pda([s], N) * len(N). % parse of the entire input labeled s
5

6 inputs: rewrite(_,_); rewrite(_,_,_); word(_,_,_); len(_).
7 outputs: goal.‘

The following program was manually specified using an extension of specu-

lation, which permits a CCG-like composition rule.227 Unfortunately, we have

not been able to fully formalize the correctness conditions for this extended

transformation as of the time of writing. We can, however, use our fold/unfold

transformations to prove that the program below is equivalent to the original.

Call the original program p(0) and the program below p(1).

1 goal += len(N) * pda([s],N).
2 pda(Ys,I)/pda(Ys,I). % base case
3 pda([X|Xs],K)/pda(Xs,I) += pda(Xs,J)/pda(Xs,I) * rewrite(X,Y) * word(Y,J,K).
4 pda([X|Xs],K)/pda(Xs,I) +=
5 pda([Z,Y|Xs],K)/pda([Y|Xs],J) * pda([Y|Xs],J)/pda(Xs,I) * rewrite(X,Y,Z).
6 % recovery rules
7 pda([X|Ys],K) += (pda([X|Ys],K)/pda(Ys,I)) * pda(Ys,I).
8 pda([],0).

Recovering CKY. First, let us see how the program converts into CKY. If

we unfold the goal rule (twice), we arrive at a program that no longer depends

227It appears as if our hoisting transformations are incapable of this transformation because
they only have a CCG-like application rule.
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on the pda relation:

1 pda(Ys,I) / pda(Ys,I).
2 pda([X|Xs],K)/pda(Xs,I) += pda(Xs,J)/pda(Xs,I) * rewrite(X,Y) * word(Y,J,K).
3 pda([X|Xs],K)/pda(Xs,I) +=
4 pda([Z,Y|Xs],K)/pda([Y|Xs],J) * pda([Y|Xs],J)/pda(Xs,I) * rewrite(X,Y,Z).
5 goal += len(N) * pda([s],N)/pda([],0).

This program does not instantiate the Xs. We could run this program as it is,

and it will have the O(k3 n3) running time of CKY. We can also use our program

specialization §6.2 transformation to arrive at the following program, which is

visually more similar to CKY. Notice that the argument ordering to the new

relation p is chosen arbitrarily.

1 p(X,K,I) += rewrite(X,Y) * word(Y,I,K).
2 p(X,K,I) += p(Z,K,J) * p(Y,J,I) * rewrite(X,Y,Z).
3 goal += len(N) * p(s,N,0).

It is easy to see that this program is equivalent to CKY.

Correctness by fold/unfold. Now, we investigate the correctness of

our manually specified program. The key is to show that the recovery rules

can be transformed into the original definition p(0). If we can do that using

semantics-preserving transformations, we would have a proof that p(0) and p(1)

are equivalent.

1 pda([X|Ys],K) += (pda([X|Ys],K)/pda(Ys,I)) * pda(Ys,I).
2 pda([],0).

Can be transformed into the original rules:

1 pda([],0).
2 pda([X|Xs],K) += pda(Xs,J) * rewrite(X,Y) * word(Y,J,K).
3 pda([X|Xs],K) += pda([Y2,Y1|Xs],K) * rewrite(X,Y1,Y2).

Unfolding the recursive rule twice (using p(1) as auxiliary definitions):

1 pda([],0).
2 pda([X|Ys],K) += pda([Z,Y|Ys],K) / pda([Y|Ys],J) * pda([Y|Ys],J) / pda(Ys,I) *
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rewrite(X,Y,Z) * pda(Ys,I).
3 pda([X|Ys],K) += rewrite(X,Y) * word(Y,I,K) * pda(Ys,I).

Folding this program twice (using p(1) as auxiliary definitions) us what we were

after.

1 pda([],0).
2 pda([X|Ys],K) += pda([Z,Y|Ys],K) * rewrite(X,Y,Z).
3 pda([X|Ys],K) += rewrite(X,Y) * word(Y,I,K) * pda(Ys,I).

Since we used semantics-preserving rules to arrive at this definition, it follows

that p(0) ≡ p(1). We used our Dyna library to work through this example, meaning

we did not have to manually perform the transformations or check their safety

conditions; all that was handled seamlessly by the library. We used our search

algorithm to enumerate the valid folds but chose among them manually.
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program, 12

fixpoint equations, 60

set of derivations, 59

internal representation, 18

semantically equivalent, 152

strongly equivalent, 152

support, 102

program transformation

partial correctness, 166

safe, 152

semantics-preserving, 152

query, 15

explicit result stream, 22

implicit result stream, 23

result, 15

rule, 12

axiom, 14

body, 12

grounding, 13

head, 12

set of all groundings, 14

side condition, 14
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subgoal, 13

rule measure, 176

semiring, 13, 38

n-fold product, 39

n-fold sum, 39

natural order, 66

property

ω-continuous, 68

complete, 67

naturally ordered, 66

property

K-closed, 40

closed, 39

commutative, 39

idempotent, 39

monotonic, 41

star operator, 39

semiring instances

K-best, 48

K-collapsed natural, 46

Łukasiewicz, 45

arctic, 47

boolean, 44

convex sets in a vector space, 53

counting, 45

first-order expectation, 46

formal-language, 51

fuzzy sets, 45

integer, 45

lineage, 50

log nonnegative real, 46

matrices, 49

max-plus, 47

max-times, 47

maximum capacity, 48

min-plus, 47

min-times, 47

Nonnegative real, 46

pareto frontier, 52

provenance, 50

real, 45

second-order expectation, 46

semilinear sets, 52

sets, 50

three-valued logic, 45
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tropical, 47

Viterbi, 47

weighted formal language, 51

simple, 105

simple program, 72

simple type, 107

size parameter, 132

slashed item, 189

specialized program, 15

speculation transformation, 191

step operator, 63

substitution, 19

substitution mapping, 19

supremum, 68

term

ground terms, 12

Herbrand universe, 12

nonground term, 18

to-do list, 213

trace, 189

transformation sequence, 178

reference program, 178

truncation, 115

tupling technique, 157

type program, 103

unfold transformation

basic unfold transformation, 162

generalized unfold

transformation, 166

unification, 19

update, 81

valuation, 58

valuation function, 12

value-preserving bijection, 152

variable-elimination technique, 157

variables, 13
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