Forward-Backward with Failure Arcs:
Faster Inference for Variable-Order Conditional Random Fields

Tim Vieira®*and Ryan Cotterell* and Jason Eisner
Johns Hopkins University
{timv, ryan.cotterell, jason}@cs. jhu.edu

Abstract

Variable-order conditional random fields
(VoCRFs) offer an elegant manner to com-
promise between expressive higher-order
CRFs and speedy lower-order CRFs—the
model utilizes only those bits of higher-
order structure that actually help perfor-
mance, leaving out the rest. This approach
yields a model with faster inference, avoid-
ing the exponential runtime, when all con-
texts are considered. In this work, we in-
troduce an asymptotically faster algorithm
using failure arcs, a trick from the finite-
state literature, for inference on variable-
order CRFs and show empirically faster
runtimes. We experiment on multi-lingual
part-of-speech tagging.

1 Introduction

Linear-chain conditional random fields (CRFs)
(Lafferty et al., 2001) have proven themselves a
successful formalism for tagging tasks common in
natural language processing (NLP). A CRF defines
a probabilistic model of an output sequence condi-
tioned on an input sequence. CRFs have retained
their popularity over the years in large part due
to the ability to consider arbitrary features of the
input. In terms of output structure, however, infer-
ence in these models remains efficient only if the
set of tag combinations is small. An order-k CRF
(abbreviated k-CRF) is an extension to the original
model that allows for higher-order tag interactions.
Setting k£ = 1 yields the original model of Lafferty
et al. (2001) and £ > 1 yields the higher-order
models of Sha and Pereira (2003). While more
expressive models are often more accurate (Miiller
et al., 2013), inference in such models comes at an
increased runtime—namely, it is exponential in the
order k. One way around this increased runtime is
to allow a (variable-order) subset of all order-£ tag
interactions; such a model is known as a variable-
order CRF (VoCRF) (Ye et al., 2009). Crucially,

*Equal contribution

Figure 1: Here we depict a sample VoCRF lattice at three steps
t—1, t and t+1 in medias res. The tag setis Y = {A,B,C,D,E}
and W = {A,B,C, AB, ABA}. Thus, H = {e, A, B, AB}. The
¢-arcs are the only dotted arcs in the figure and show the
backoff. We show the p-arc, which accepts the tags D and E
that are not in W.

it incorporates only those important higher-order
interactions, while excluding the gratuitous ones.
In this work, we develop an asymptotically faster
inference algorithm for VoCRFs. Indeed, given
a tag set Y, our algorithm runs up to |Y'| times
faster. For example, consider part-of-speech (POS)
tagging on the Penn Treebank, where |Y| = 36.
Our method draws upon failure arcs, a technique
from the finite-state literature used to efficiently en-
code backoff n-gram language models as weighted
finite-state machines; to the best of our knowledge,
however, the use of failure arcs has not migrated
to structured prediction. We review the relevant
background material and provide a succinct expo-
sition (with pseudocode) of our algorithm. Finally,
we conduct a series of experiments that shows the
practicality of our algorithm with empirical gains
on multi-lingual POS tagging on the Universal De-
pendencies treebanks (Nivre et al., 2015).

2 Faster Variable-Order CRFs

In this section, we provide background on higher-
order CRFs, motivating their refinement into

{timv,ryan.cotterell,jason}@cs.jhu.edu

VoCREFs, and develop a faster inference algorithm
by encoding VOCRFs compactly as weighted finite
state machines (WFSAs) with failure arcs.

2.1 Higher-Order CRFs

A Ek-CRF is a conditional distribution of an output
sequence given an input sequence:

po(y | @)= oy exp (L1, 0 ' f(x,t,wy)) (1)

where n = || = |y| is the input and output length,
wy = Yppo Yy (Orwyg = yr--yif t < k),
Ff(z,t,w;) € R is an arbitrary user-defined fea-
ture vector (possibly computed by some neural net-
work), and @ € R? is the parameter vector.
Because each feature vector f(x,t, w;) consid-
ers at most a length-(k + 1) substring of y, infer-
ence over the set of |Y'|" possible y values can be
performed in time only O (n - [Y[¥+1). Even so, it
is wasteful to consider such an expansive set of sub-
strings, as most (k + 1)-grams are not idiosyncratic
enough to require their own feature weights.

2.2 Variable-Order CRFs

To speed up the k-CRF, an important refinement is
to consider variable-length substrings. A VoCRF
(Ye et al., 2009; Nguyen et al., 2014) specifies a
finite set VYW C Y* of output substrings, and rede-
fines wy to be the longest suffix of y; - - - y, that ap-
pears in W.! Typically, f(z, ¢, w;) will extract fea-
tures from both w; and its shorter suffixes. There
is always some k large enough that W C Y*+1,
but if [W| < |Y[¥*! we would like inference to
be proportionately faster than in the k-CRF. This
will let us trade accuracy for speed by reducing W.

2.3 Finite-State Acceptors and Failure Arcs

Weighted finite-state acceptors (WFSAs) are ubig-
uitous in NLP (Mohri, 1997) and can be used to
implement VOCRF models. Given W and an input
x, we can construct a deterministic WFSA (Fig. 1)
whose accepting paths correspond to the possible
outputs y € Y. Given also f and 0, the arcs of
this DFA can be weighted so that the relative prob-
abilities of the y sequences, from Eq. (1), are given
by the weights of the corresponding paths (where
a path’s weight is the product of its arc weights).
The normalizing constant Zg(x) in Eq. (1) is the
total weight of all paths (Mohri, 2002).

As Fig. 1 illustrates, an economical construc-
tion employs failure arcs. A failure arc (¢-arc)

'To ensure this exists, we require eithere € WorY C W.

consumes no input and may be taken only if no
ordinary arc is available (Allauzen et al., 2003). It
serves as a default option that backs off to a sim-
pler context state. While ¢-arcs have mainly been
used to compactly encode backoff language mod-
els, here we apply them to structured prediction.
We simplify our construction by assuming that
W is closed under prefixes (as ensured by §3’s algo-
rithm for learning YV). Each nonempty string w €
W can be written as hy, where h € Y™ is a “his-
tory” and y € Y is the next tag; let H denote the set
of all histories. The WFSA states are {0, ...,n} X
H, with (0, €) being the initial state and {n} x H be-
ing the final states. Each nonempty”> w = hy € W

generates an arc (t — 1, h) 24 (t,h') for each
1 <t < n,where b’ € H is the longest history that
is a proper suffix of w. This arc will be traversed
only if w; = w, so we set the arc weight e =
exp(0" f(x,t,w)). To handle all actions y/ € Y
for which hy’ ¢ W, each state also has an outgoing

failure arc (t — 1, h) LZat (t—1,h), where h € H
is the longest history that is a proper suffix of h.

This compact WFSA has (n+ 1)(|W| + |H|) =
O(n - |[W)|) arcs. Without failure arcs, every state
would have needed separate outgoing arcs for all
y €Y, for (n+1)(|H||Y|) arcs. Failure arcs there-
fore make us up to |Y'|/2 times smaller.® For exam-
ple, we improve over the prior work of Vieira et al.
(2016), which learned a VoCRF without failure
arcs, and which itself provided an O(|#|) speedup
over (Ye et al., 2009; Nguyen et al., 2014).

2.4 Improved Inference in VoOCRFs

Our modification of the forward-backward method
is needed to run in time proportional to the number
of arcs. The trick is to use subtraction to correct
for double-counted paths (similarly to Roark et al.
(2013, §4. 1)).* This beats the naive algorithm that
regards a failure arc as an abbreviation for up to |Y'|

ZFor the case w = ¢, we take h = ¢ (we include ¢ in H)

and y = p. This generates an arc (t—1,¢) LA (t,€). The
special symbol p is similar to ¢ in that it matches “any other”
symbol, but unlike ¢ it consumes that symbol. The ¢ state
cannot back off further, so it has this p arc instead of a ¢ arc.

*In the case where |W)| ~ |/, i.e., most histories can be
extended in only one way. For example, V¥V might contain
only a single long string and its prefixes. In general, failure
arcs help at states that can only be extended in < |Y'| ways.

* Note that not all operations of interest efficiently lend
themselves to this “subtraction”, particularly Viterbi decoding.
Viterbi would require an implementation of max that can
delete subsets of its aggregands. This is possible with an
additional log |Y'| factor runtime, giving O(n - |[W]| - log |Y|),
by using a Fenwick tree data structure (Fenwick, 1994).

Algorithm 1 Compute log Zg(x) where |x| = n.

Algorithm 2 Compute Vg log Zg ().

B(,-)=0; B(n,h) =1forh € H
: fort =ndowntol:

for h € H from shortest to longest :

for (t—1, h)’s failure arc~¢—/1> (t—1,h):
B(t—1,h) += 5(t—1,h)

for (t — 1, h)’s outgoing arcs vl (t,h):

B(t—1,h) +=¢- B(t,h’)

h = longest proper suffix of h with hy € W

D> see footnote 4

AR A A U > ey

for (t—1, h)’s outgoing arc o8 (t, le):
10: B(t—1,h)-=¢-B(t, fz,/)

11: Z = §(0,¢)

12: return log Z

ordinary arcs that must be processed individually
(thus saving space but not time). |Y’| is non-trivial
for many applications in NLP, e.g., Penn Treebank
tagging considers |Y'| =36 and Czech morpholog-
ical tagging considers |Y| > 1000 (Haji¢, 1998).
Pseudocode that is more specialized to our VoCRF
WESA architecture is given as Algs. 1-2. Note
that in practice, there is no need to build an explicit
WEFSA. A loop like line 6 of Alg. 1 is implemented
simply by iterating through the (y, e, h') triples
that would correspond to the outgoing arcs from
(t—1,h). These can be computed from WV (and
x, f, 0) as described in the previous section.
Specifically, Alg. 1 is a backward algorithm to
sum over all paths in the WFSA. We algorithmi-
cally differentiate this code (Griewank et al., 1989)
to obtain the additional (‘“forward”) code in Alg. 2.
As Eisner (2016) explains, this is a generic way to
derive forward-backward algorithms. The returned
gradient vector A is used for optimization in §3,
but it also equals the vector of expected feature
counts (used for MBR decoding in §4) that is tradi-
tionally presented as forward-backward’s output.

3 Learning V| from Data

A key concern in applying VoCRFs is learning a set
W that result in a fast and accurate model. To do
this, we minimize the following learning objective:

= logpe(y™|a) + A[|6]5 + v R(6). ()
i—1 S~~~ e

loss generalization runtime

“In the special case y = p, the edge weight e must be
multiplied by the number of tags in Y that will use the p-arc.

: A=0;a(,)=0; a(0,e) =1/Z

1

2: fort=1ton:

3: for h € H from longest to shortest :

4: for (t—1, h)’s failure arc ki (t—1,h):
5: a(t—1,h) += a(t — 1,h)

6: for (t — 1, h)’s outgoing arcs 244 (t,h'):
7: Oé(t, h/) +=e€- O[(t—l, h,) D> see footnote 4
8: A +=a(t-1,h)-e-B(t, h')- f(z,t, ha)
9: h = longest proper suffix of h with hy € W
10: for (t—1, h)’s outgoing arc A (t, ﬁ,):
1: a(t,h))-=a(t—1,h) &
12: A -= a(t-1,h)-& B(t, k) f(z,t, ha)
13: return A

The first term is the loss, which we take as the
log-likelihood of the training data { (y®, ()} .
The later terms encourage generalization (Lo
regularization) and a small runtime; each has a
coefficient that controls its relative importance.

Since, our model parameterization assigns a
unique weight 8,, to each string w € Y*, R
would ideally compute || by looking at which
features have a nonzero weight in 8 taking account
the fact that VW must be prefixed closed. Unfortu-
nately, minimization with this version of R is NP-
hard. Thus, we use a convex relaxation known as
tree-structured group lasso (Yuan and Lin, 2006;
Nelakanti et al., 2013), which was shown effec-
tive for learning VW for VoCRFs by Vieira et al.
(2016). We define a group G, for each w, which
consists of the indices of indicator features of all
strings in VV that have w as a prefix. We then de-
fine R(0) = > ey~ 110a., |2, where 8¢, is the
subvector for the group G,. This group structure
differs from Vieira et al. (2016) because they tar-
geted || instead of [W)|, which is apt when W
factorizes as H x Y. However, with failure arcs,
this factorization is no longer necessary.

Optimization. Despite its convexity, optimizing
Eq. (2) still constitutes a challenge as there are an
infinite number of potential prefixes. Thus, we
define an active set (Schmidt, 2010) of features
that are allowed to be nonzero. To optimize the
objective with respect to the parameters 8, we per-
form the following inductive procedure. Let wk)
denote the active set at the k™ epoch. We define
WO =Y. With a given W), we build a VoCRF
and perform a pass over the training data using

runtime Basque Bulgarian Hindi == Norwegian Slovenian
|W’ < 7 without-¢ with-¢ without-¢ with-¢ without-¢p with-¢p without-¢ with-¢ without-¢ with-¢
256 9343 9349 9734 9751 96.13 9629 96.69 96.82 9543 95.78
512 9343 9349 9745 97.51 96.18 96.29 96.72 96.85 95.62 95.78
1024 9343 9349 9745 97.51 96.22 96.29 96.76 97.03 95.78 95.85
2048 9343 93.53 97.46 97.65 96.29 96.29 96.76 97.05 95.78 95.85
4096 9348 93.55 9748 97.65 96.29 96.31 96.89 97.08 95.78 95.93
8192 9348 93,55 97.50 97.71 96.29 96.34 96.94 97.15 95.78 96.00

Table 1: Test set results. POS tagging in 5 languages. See §4 for experimental setup. Each row represents a different runtime
determined by thresholding VW < 7. For each language, a row compares a system with failure arcs and without. The failure
arc version is always more accurate for the given runtime budget. This increase in accuracy is do the fact that with failure
arcs we can select features that cover a wider output context, without incurring the cost last symbol closure.

the proximal gradient algorithm SPOM (Martins
et al., 2011a) with learning rates determined by
ADAGRAD (Duchi et al., 2011) with the proximal
update applied every 25 steps for efficiency. At
the end of this epoch, define W*+D = {wy |
weWH 4y eV &80, # 0}. We note that this
procedure differs from that in Vieira et al. (2016),
in that they require an additional closure step in
order to run inference. At convergence, we set
W= {w|w e W &@,, # 0} for decoding.

We make use of the budget-driven shrinkage
heuristic Martins et al. (2011b). Rather than run-
ning optimization with a fixed parameter -, it is
instead determined in a time-varying manner: -y is
the value that would ensure [W®*)| < B after ap-
plying the proximal operator. We then use ~; in the
proximal update.’ Here B is a user-friendly budget
parameter. Furthermore, this trick guarantees that
|W*)| remains < B - |Y'| (after every proximal up-
date). This is important because a bad setting for
values will cause the active set to grow, increasing
the runtime of computing gradients.

4 Experiments and Results®

Experimental Setup: We closely replicate the
experimental setup in prior work by Vieira et al.
(2016). We conduct experiments on POS tagging
(Nivre et al., 2015) in five languages: Basque,
Bulgarian, Hindi, Norwegian and Slovenian. For
all languages |Y'| = 17. We use precisely the same
features as Vieira et al. (2016), which are given
Appendix B for completeness. One important
difference is that for decoding we use minimum

SOf course, this approach is heuristic because ~; may os-
cillate causing optimization to never fully converge.

%0ur code is available at the following URL:
http://github.com/timvieira/vocrf

Bayes risk decoding (MBR) (Bickel and Doksum,
2015) under hamming loss,” unlike the prior
work. We found that MBR improves accuracy on
development data for both methods.

We will compare two methods, VoOCRF with
failure arcs and without.® Using the procedure
described in §3 determine a tags W for various
(A, B)-pairs using the development set (with early
stopping). Prior work, swept -y directly (without the
budget-trick). Additionally, they limited |w| < 3
for all w € W, we do not make such a restric-
tion for either method. We train for 30 passes over
the training data. We report the results in Tab. 1.
Overall, the accuracy is comparable with popular
open-source CRF taggers, e.g., MARMOT (Miiller
etal., 2013).

5 Conclusion

We have presented a novel algorithm for infer-
ence in VOCRF. We derive our algorithm using
the concept of a failure arc, a popular technique in
the finite-state language modeling literature. We
provide detailed pseudocode and analysis of our
scheme. The algorithm yields up to a |Y'| speed-up.
We show that this improvement is also reflected
empirically, we offer series of tagging experiments,
using multi-lingual POS tagging.

"MBR straightforward to compute given Algs. 1 and 2
since it amounts to computing the expected counts (marginal
probabilities in this case), %?m = p(Y; = ylxz), of
each symbol y at each position ¢ in the input and taking 7; =
argmax,p(Y: = y|x) and returning y.

81n the final version, we will include paired-permutation
significance tests.

http://github.com/timvieira/vocrf

References

Cyril Allauzen, Mehryar Mohri, and Brian Roark. 2003.
Generalized algorithms for constructing statistical
language models. In Proceedings of the 41st Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
Sapporo, Japan, pages 40—47.

Peter J. Bickel and Kjell A. Doksum. 2015. Mathe-
matical statistics: basic ideas and selected topics,
volume 2. CRC Press.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. JMLR 12:2121-2159.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP. Association for Computational
Linguistics, Austin, TX, pages 1-17.

Peter M. Fenwick. 1994. A new data structure for cu-
mulative frequency tables. Software: Practice and
Experience 24(3):327-336.

Andreas Griewank et al. 1989. On automatic differenti-
ation. Mathematical Programming: recent develop-
ments and applications 6(6):83-107.

Jan Haji¢. 1998. Tagging inflective languages: Pre-
diction of morphological categories for a rich, struc-
tured tagset. In 36th Annual Meeting of the Associ-
ation for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics,
COLING-ACL 98, August 10-14, 1998, Université
de Montréal, Montréal, Quebec, Canada. Proceed-
ings of the Conference.. pages 483—490.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001. pages 282-289.

André F. T. Martins, Noah A. Smith, Eric P. Xing, Pe-
dro M. Q. Aguiar, and Mério A.T. Figueiredo. 201 1a.
Online learning of structured predictors with multi-
ple kernels. In AISTATS. pages 507-515.

André FT Martins, Noah A Smith, Pedro MQ Aguiar,
and Mario AT Figueiredo. 2011b. Structured spar-
sity in structured prediction. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, pages 1500-1511.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational lin-
guistics 23(2):269-311.

Mehryar Mohri. 2002. Semiring frameworks and al-
gorithms for shortest-distance problems. Journal of

Automata, Languages and Combinatorics 7(3):321—
350.

Thomas Miiller, Helmut Schmid, and Hinrich Schiitze.
2013. Efficient higher-order CRFs for morpholog-
ical tagging. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, Seattle, Washington, USA, pages 322-332.

Anil Nelakanti, Cedric Archambeau, Julien Mairal,
Francis Bach, and Guillaume Bouchard. 2013.
Structured penalties for log-linear language models.
In EMNLP. pages 233-243.

Viet Cuong Nguyen, Nan Ye, Wee Sun Lee, and
Hai Leong Chieu. 2014. Conditional random field
with high-order dependencies for sequence labeling
and segmentation. Journal of Machine Learning Re-
search 15(1):981-1009.

Joakim Nivre, Cristina Bosco, Jinho Choi, Marie-
Catherine de Marneffe, Timothy Dozat, Richard
Farkas, Jennifer Foster, Filip Ginter, Yoav Gold-
berg, Jan Haji¢, Jenna Kanerva, Veronika Laip-
pala, Alessandro Lenci, Teresa Lynn, Christopher
Manning, Ryan McDonald, Anna Missild, Simon-
etta Montemagni, Slav Petrov, Sampo Pyysalo, Na-
talia Silveira, Maria Simi, Aaron Smith, Reut Tsar-
faty, Veronika Vincze, and Daniel Zeman. 2015.
Universal dependencies 1.0. LINDAT/CLARIN
digital library at the Institute of Formal and Ap-
plied Linguistics, Charles University in Prague.
http://hdl.handle.net/11234/1-1464.

Brian Roark, Cyril Allauzen, and Michael Riley. 2013.
Smoothed marginal distribution constraints for lan-
guage modeling. In ACL. pages 43-52.

Mark Schmidt. 2010. Graphical Model Structure
Learning with {1-Regularization. Ph.D. thesis, Uni-
versity of British Columbias.

Fei Sha and Fernando C. N. Pereira. 2003. Shal-
low parsing with conditional random fields. In Hu-
man Language Technology Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, HLT-NAACL 2003, Edmonton,
Canada, May 27 - June 1, 2003.

Tim Vieira, Ryan Cotterell, and Jason Eisner. 2016.
Speed-accuracy tradeoffs in tagging with variable-
order CRFs and structured sparsity. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics, Austin, Texas, pages 1973—
1978.

Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. 2009. Feature
hashing for large scale multitask learning.

Nan Ye, Wee Sun Lee, Hai Leong Chieu, and Dan
Wu. 2009. Conditional random fields with high-
order features for sequence labeling. In Advances
in Neural Information Processing Systems 22: 23rd

http://hdl.handle.net/11234/1-1464
http://hdl.handle.net/11234/1-1464

Annual Conference on Neural Information Process-
ing Systems 2009. Proceedings of a meeting held
7-10 December 2009, Vancouver, British Columbia,
Canada.. pages 2196-2204.

Ming Yuan and Yi Lin. 2006. Model selection and es-
timation in regression with grouped variables. Jour-
nal of the Royal Statistical Society: Series B (Statis-
tical Methodology) 68(1):49-67.

A General Forward-Backward
Algorithm for WFSAs with Failure
Arcs

Given an acyclic WFSA with failure arcs. This is
more general than the specific VOCRF setting in §2.
In that setting, the WFSA has a specific topology
and is deterministic and all failure arcs have weight
1, but the method below doesn’t require any of
those things.

We now describe the algorithm. In addition to
Alg. 1’s B(s), we also maintain 5(s,a) = total
weight of all accepting paths from s that can be
taken if the next symbol is a. 5(s) and (s, a) are
analogous to V'(s) and Q(s,a) in reinforcement
learning. In the computation, we must memoize
the 5(s) values to obtain polynomial runtime. For
optimal asymptotic runtime, we also memoize the
B(s, a) values that are actually computed.

We will also maintain a third quantity, 5(s,a) =
Ze-sim' weight(e) - B(s’, a) which sums over the
backoff arcs from s, if any. (Usually there’s exactly
one backoff arc from s, or none in the case of the
€ state. Writing the summation lets us handle the
case where states have zero or more backoff arcs

in a unified way.)

B(s,a) is a kind of "default value” for 5(s, a).
That is, if s has no outgoing arc labeled a, then
the default is correct and (s, a) = S(s,a). But
otherwise we must override the default and write
B(s,a) = > . a,, weight(e) - B(s), which
sums over a arcs from s. Finally, ((s) =

(32,0, weight(e) - () + L, (B(s,a) —

A e.s—Ss
B(s,a)), where the second sum ranges over a € Y’
such that s has an outgoing arc labeled a.

(Remark: The two cases for (s, a) each multi-
ply an arc probability by another /3 value. In the
first case, the symbol a is read within the first fac-
tor, whereas in the second case it is read within the
second factor.)

State that the backward algorithm is now sim-
ply a loop that computes [3(s) at each WFSA
state s, visiting the states in reverse toposorted or-
der. Cyclic WFSA require solving a linear system,
which we’ve outlined in this appendix, because
there is no topological order.

As we stated in §2, computing the gradient can
be derived by algorithmic differentiation on the
backward algorithm we just outlined.

B Features

We use the exact features in Vieira et al. (2016).
We include a description in this appendix for com-
pleteness. Thus, the following description is taken
directly from their paper and lightly edited to match
our notation. Our feature function f(x, ¢, hy) has
indicator features which fire on the identity of the
hy as well as features which are a conjunction of
y and local properties of x. We use the following
language-agnostic properties of (x, t):

e The identities of the tokens z;_3, ..., T¢+3,
and the token bigrams (xy1, z¢), (¢, T4—1),
(r¢—1,z¢+1). We use special boundary
symbols for tokens at positions beyond the
start or end of the sentence.

e Prefixes and suffixes of x¢, up to 4 characters
long, that occur > 5 times in the training data.

e Indicators for whether x; is all caps, is
lowercase, or has a digit.

e Word shape of z;, which maps the token
string into the following character classes (up-
percase, lowercase, number) with punctuation
unmodified (e.g., VoCRF-like = AaAAA-aaaa,
$5,432.10 = $8,888.88).

For efficiency, we hash these properties into 222

bins. The features are obtained by conjoining bins
with y; (Weinberger et al., 2009): e.g., there is a
feature that returns 0 unless 3, = NOUN, in which
case it counts the number of bin 1234567’s prop-
erties that (x, t) has. The context features are not
hashed.

