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Abstract
Declarative programming is a paradigm that allows programmers to
specify what they want to compute, leaving how to compute it to a
solver. Our declarative programming language, Dyna, is designed
to compactly specify computations like those that are frequently
encountered in machine learning. As a declarative language, Dyna’s
solver has a large space of (correct) strategies available to it.
We describe a reinforcement learning framework for adaptively
choosing among these strategies to maximize efficiency for a
given workload. Adaptivity in execution is especially important
for software that will run under a variety of workloads, where no
fixed policy works well. We hope that reinforcement learning will
identify good policies reasonably quickly—offloading the burden of
writing efficient code from human programmers.

CCS Concepts •Theory of computation→Constraint and logic
programming; Reinforcement learning; •Software and its engi-
neering→ Very high level languages; Just-in-time compilers; Data
flow languages

Keywords Declarative programming, Machine learning, Rein-
forcement learning

1. Introduction
Many algorithms, especially in machine learning, are set up to com-
pute and maintain a collection of values, iteratively updating them
until some convergence criterion has been reached. For example,
neural networks, message passing, Gibbs sampling, numerical opti-
mization, and branch-and-bound search can all be defined this way.
This makes it possible to design a programming language around
rules that define various intermediate and final values in terms of
one another and the input values.

Computation graph libraries1 are close to this view in that a
programmer can construct such a graph of relationships among val-
ues. But those graphs are specified procedurally. By instead basing
our language, Dyna, on logic programming (cf. Prolog (Colmerauer
and Roussel 1996)), we get expression pattern matching that can
synthesize computation graphs on the fly and in a data-dependent

1E.g., Theano (Theano Development Team 2016) or TensorFlow (Abadi
et al. 2015).

way. The programs can even describe infinite and/or cyclic graphs. A
Dyna program has no side effects. Rather, it defines a data structure
that can answer queries about the values of nodes in the implicit
computation graph. The data structure can also support updates to
the values by lazily or eagerly propagating changes to descendant
nodes (i.e., truth maintenance), which affects future query answers.

A declarative program of this sort is essentially just a set of
equations, which must be jointly solved by traversing relevant
parts of the computation graph in order to compute and recompute
values as needed. There are many admissible solution strategies that
vary in their laziness, in their ordering of tests and nested loops,
in their use of parallelism (including GPU kernels), and in how
they store and index values. Thus, Dyna provides a playground of
optimization opportunities. In principle, a Java or ML program for
solving the same system of equations could likewise be optimized,
by transforming the source code to change its strategy, but this
would in effect require recovering the underlying equations first.

At present, we are designing a new solver for Dyna that will
actively explore different execution strategies at runtime, using
reinforcement learning. Some strategies for a given program will
work better on a given workload, and the solver should migrate
toward these over time. This is a technically interesting challenge
for reinforcement learning, and has the promise of finding strategies
that a human implementer would choose only with prior knowledge
of the workload, good judgment, and experimentation.

This workshop paper aims to give an overview of the project and
our approach. We first give a high-level sketch of (a subset of) the
Dyna language, followed by a quick review of reinforcement learn-
ing. We then explain the general architecture of the Dyna runtime
solver before elaborating on the optimization opportunities that we
face and how we plan to address them with reinforcement learning.

1.1 Dyna at a Glance
Dyna (Eisner and Filardo 2011; Eisner et al. 2005) is a high-level
declarative language for succinctly specifying computation graphs
via rules. To get a sense for the language, consider a classic example:
multi-source shortest path in a directed graph.

| pathCost(S,S) min= 0.

| pathCost(S,T) min= pathCost(S,U) + edge(U,T).

|
| edge("a","b") = 1. % hard-coded edge costs

| edge("b","c") = 2.

| ...

As the example shows, a Dyna program is a collection of rules
given in a Prolog-like notation. Each rule is a template whose vari-
ables—named by capitalized identifiers—may be instantiated with
arbitrary terms. For example, the first two rules above have infinitely
many instantiations, which include



|pathCost("a","a") min= 0.

| pathCost("a","a") min= pathCost("a","b") + edge("b","a").

| pathCost("a","c") min= pathCost("a","b") + edge("b","c").

| pathCost("a","c") min= pathCost("a","d") + edge("d","c").

| ...

These instantiations collectively define the values of many items
such as pathCost("a","c"). The aggregator min= computes each
item using a running minimum (by analogy to +=, which as
in C would compute a running total). In conventional notation,
we are defining pathCost("a","c")

def
= minU pathCost("a",U) +

cost(U,"c"), where the minimization is over all U such that both of
the summands have values. Similarly, pathCost("a","a") is also
defined by a minimization over a bag of values, but in this case the
bag also includes 0 thanks to the first rule. Since min is an associative
and commutative operator, the order in which it aggregates the bag’s
elements is immaterial.

Dyna programs support general mathematical expressions. A
neural network and its training objective can be defined via

| σ(X) = 1/(1+exp(-X)). % define sigmoid function

| out(J) = σ(in(J)). % apply sigmoid function

| in(J) += out(I) * edge(I,J). % vector-matrix product

| loss += (out(J) - target(J))**2. % L2 loss

The structure and weights of the network are specified by defining
the values of items of the form edge(I,J). This could be done by
listing one rule per edge, but it can also be done systematically
by writing edge-defining rules in terms of structured node names,
where these names will instantiate I, J above. For example,

| edge(input(X,Y),hidden(X+DX,Y+DY)) = weight(DX,DY).

| weight(DX,DY) := random(*,-1,1) for DX:-4..4, DY:-4..4.

defines a convolutional layer with initially random weights2

and a 9 × 9 convolution filter. For example, the node named
hidden(10,10) has a connection from the node named input(8,11)

with weight weight(-2,1). The input to the network is specified at
runtime by updating the values of out(input(...)); these items
otherwise have no value as the input nodes have no incoming edges.

Dyna’s computation graph may be infinite. For example, the
Dyna program for Fibonacci numbers has support over all positive
integers.

| fib(0) = 0.

| fib(1) = 1.

| fib(N) = fib(N-1) + fib(N-2) for N > 1.

To support inference in infinite graphs, the solver should lazily
explore only as much of the graph as needed to answer a given
query, e.g., a user’s query for the value of fib(13).

The Dyna solver seeks a fixed point in which all items are consis-
tent, i.e., each item’s value matches its definition from other values.
A cyclic program may not have a unique fixed point. If there is more
than one, the solver is permitted to choose arbitrarily. In general, the
solver may fail to terminate because no fixed point exists or because
it is unable to discover one. Sometimes the solver terminates only
at numerical convergence, as for the geometric series sum

| a += 1.

| a += a/2.

Eisner and Filardo (2011) give a full explanation of Dyna with
more complex examples. Two earlier implementations can be found
at dyna.org and github.com/nwf/dyna. Dyna is designed to
handle the kinds of iterative updates needed for AI/ML algorithms

2Each expression random(*,-1,1) names a distinct random variate,
since the special argument * generates a symbol (“gensym”) that is different
in each instantiation of the rule. Thus, the last line defines 81 distinct weights.

in which discovering or updating values will affect other related
values (Eisner 2008). Such algorithms include message passing in
variational inference and graphical models, constraint propagation
in backtracking search, theorem proving (including parsing), neural
networks including convolutional networks and backpropagation,
Markov chain Monte Carlo, stochastic local search, and so on.

1.2 Learning How To Execute: Is It Plausible?
Given a Dyna program, our goal is to automatically search a rich and
potentially infinite space of correct implementations. Let us suppose
that we can generate code for most of the strategies and reusable
tricks (section 3) that human programmers commonly employ. Still,
we must automatically decide where to apply these strategies. Will
an automatic method actually be able to discover implementations
whose efficiency rivals that of human-written code?

Imagine that the competing human programmer (writing in C++)
has a Dyna program implicitly in mind. The programmer designs a
few data structures, to store the values of a few broad categories of
Dyna items. These come with methods for querying and maintaining
these values according to the Dyna program’s rules. The programmer
mentally generates some implementation options for each item
category, and chooses among them by guessing their relative cost.

Reinforcement learning is a natural fit for automating such
choices. It tries out different options and combinations of options
in order to compare their actual cost (i.e., execution profiling).
However, how can an automatic approach identify the category
of items to which a given option should apply?

Here we can exploit an important property of Dyna: items
are not anonymous nodes in some computation graph. They have
structured names bestowed by a human programmer.3 These names
are an important hint, allowing the reinforcement learner to learn
to classify and compare the items of a given program according to
simple features of their names. For example, it might try treating
pathCost(...) items differently from edge(...) items. It can also
learn to also pay attention to the arguments of an item’s name.
For example, nodes at time step T in a recurrent neural net might
have names that match node(T,I), whose computation should be
prioritized ahead of nodes whose names match node(T+1,I). In
short, we expect that execution policies and cost estimation functions
can often succeed, for a given Dyna program, by conditioning on
relatively simple instance features, of the sort that are commonly
induced when learning decision trees (Quinlan 1986) or sparse linear
functions (Schmidt and Murphy 2010; Schmidt 2010).

Even experienced human programmers favor simple designs and
have limited time to construct and compare alternative implemen-
tations.4 We can therefore entertain the hope that our system may
search harder and sometimes discover even better implementations.
This is particularly true during research or education, where the
humans’ focus would ordinarily be on constructing a variety of
Dyna programs for different machine learning models or algorithms,
rather than agonizing over the lower-level implementation decisions
for each program.

2. A Markov Decision Process
We model the adaptive execution of the Dyna solver as a sequen-
tial decision-making process, specifically a Markov decision pro-

3Similarly, the edges in our computation graph are not anonymous
but also have structured names. Each edge corresponds to a particular rule
together with a particular binding of values to the rule’s variables. Thus, we
can generate different code for different rules. We mention that Dyna also
has another form of structured naming: encapsulation features that group
together related items and rules into a dynabase (Eisner and Filardo 2011).

4And as for less experienced ones, we have often seen new researchers
in our lab suffer ≈ 100× slowdown by missing common optimizations.

dyna.org
github.com/nwf/dyna


Listing 1 Each thread controlling a compute device (CPU core or
GPU) runs this loop to request pending tasks from a global agenda,
execute them (which may push new tasks back onto the agenda), and
determine how long this took. The learned policy π stochastically
chooses an agenda task and executes it using RUN (Listing 2). Note:
The global time step t is incremented at line 5, but t is used only in
the comments (to match the main paper), not elsewhere in the code.

1: while true : . current time t, current state st
2: RUN(AGENDAPOP, device)
3: function AGENDAPOP(device) . do something from the agenda
4: . choose some high-priority task at that’s appropriate to this device
5: a ∼ π(· | currstate,AGENDAPOP, device); t += 1
6: RUN(method, args) where a = (method, args)
7: return (a, none) . an agenda task returns no value

Listing 2 RUN calls a method that uses policy π to choose stochasti-
cally among finitely or infinitely many strategies that could correctly
execute its task. After execution, RUN adjusts π to choose better in
future. New code must be generated on demand for a strategy that
has not been used before; using existing code (as recorded in st) is
faster, so the policy may learn to avoid asking for novel strategies.

1: function RUN(method, args) . task or subtask at time t
2: (s, C)←(currstate,CUCOST()) . save st, Ct in local vars
3: . method(args) must sample a strategy a←at∼π(· | st,method,

args), then increment t and execute the strategy. Execution may
invoke RUN recursively on subtasks (whose methods also sample
strategies from π), so it terminates in state st′ for some t′ > t.

4: (a, result)← method(args) . a denotes the chosen action at
5: (s′,∆C)← (currstate,CUCOST()− C) . new state st′
6: π.learn(s, a,∆C, s′) . at caused st  st′ costing Ct′ − Ct
7: return result
8: function CUCOST() . get cumulative cost Ct if currstate = st
9: C += load(currstate) · (CLOCK()− tick) . add ct−1 (see (3))

10: tick← CLOCK() . record wall-clock time of st for next call
11: return C . C and tick are static local variables

cess (MDP). As execution encounters choice points in the code,
where multiple choices (actions) are available, a policy π de-
termines an appropriate action at ∼ π(·|st) given the state st
of the system at time t. Upon executing the action, the solver
transitions to the next state st+1 and observes a scalar cost ct,
(st+1, ct) ∼ p(· | st, at). One typically seeks a policy that mini-
mizes the long-term discounted cost,

ρ(π)
def
= E

[
∞∑
t=1

γtct

]
(1)

where the discount factor 0 < γ < 1 encourages a convergent
sum and controls the extent to which the agent cares about the
future. Problems with this general form are known as reinforcement
learning problems (Sutton and Barto 2017).

In our setting, the MDP is used to control the solution loop shown
as Listing 1. The solver maintains an agenda—imagine a priority
queue—of tasks that may legally be performed in any order. These
tasks are queries and updates of individual items (Filardo and Eisner
2012) or sets of items (e.g., Filardo and Eisner 2017a,b). On each
iteration, the solver uses policy π to select a task from the agenda,
and again uses policy π to choose some appropriate strategy to carry
it out. Executing this strategy may spawn new queries and updates,5

to be either executed immediately, or pushed onto the agenda to be
executed later. In either case they will be executed by RUN so that π
can choose a strategy for them, too. During reinforcement learning,

5See section 3.1. While some queries and updates come from an external
user (see below), the internally generated ones are handled no differently.

Listing 3 One of the many strategies a that could be chosen and
executed during Listing 2, line 4, to carry out a query task on the con-
volutional neural net of section 1.1. This strategy handles a QUERY-
ONEVALUE task with arguments x′, y′ that seeks the value of the
single item in(hidden(x′,y′)). The strategy shown here always re-
computes the incoming edges of node hidden(x′,y′). It loops over
weight(dx,dy) items having values and “runs addition backwards”
(subtraction) to find the corresponding out(input(x,y)) items
having values. Some other example strategies: ¬ The opposite loop
order would loop over out(input(x,y)) items having values and
similarly invert addition to find the corresponding weight(dx,dy)
items having values. However, this strategy is less efficient given
our small (9× 9) convolution filter, since few of the weight(dx,dy)

items that we considered would turn out to have values (just those
with −4 ≤ dx ≤ 4,−4 ≤ dy ≤ 4).  If we were not able to invert
addition, we would need an even less efficient “guess-and-check”
strategy involving nested loops over both kinds of items. ® Before
computing the incoming edges, we could check to see if this query
has been previously computed and memoized.

1: i← NULL . Aggregation identity element
2: . compute all summands to hidden(x′,y′) item
3: for (weight(dx,dy) 7→ w) in RUN(QUERY, weight(DX,DY)) :
4: (x, y)← (x′ − dx, y′ − dy) . so that x′ = x+ dx, etc.
5: if o← RUN(QUERYONEVALUE, out(input(x,y))) :
6: i += o · w
7: return (a, i) . must return the chosen strategy a along with answer

π evolves over time: it is usually stochastic, and its choice at time t
is conditioned on the full current state st of the solver. Listings 3–4
show sample strategies for query and update tasks, respectively.

What cost should we minimize? Given a Dyna program, a driver
program interacts with the resulting data structure by issuing a
stream of external queries and updates (which place work onto the
agenda—not shown in Listing 1). Queries may be synchronous
(blocking) or asynchronous (non-blocking), but the solver must
always provide a correct answer to each query with respect to the
updates issued before it. For taking time to answer the ith query, the
solver incurs a cost of λi · latency(i), where λi is the urgency of the
query (specified by the driver program in units of cost/second) and
latency(i) is the elapsed wall-clock time between the query and its
answer (known as “flow time” in the job scheduling literature). We
now redefine the long-term discounted cost from (1) to be

ρ(π)
def
= E

[
∞∑
i=1

γiλi · latency(i)

]
(2)

where 0 < γ < 1 means that at any time, the solver cares more about
minimizing latency of currently open queries—especially the oldest
ones—than future queries. Taking O(st) to denote the set of open
external queries in state st, we define the solver’s load at time t, in
units of (discounted) cost/second, to be load(st)

def
=
∑
i∈O(t) γ

iλi.
We can now rearrange equation (2) to sum over time steps t—each
of which extends the latencies of O(st)—rather than over queries i:

ρ(π) = E

[
∞∑
t=1

ct

]
= E

[
lim
t→∞

Ct
]

for Ct
def
= c1 + · · ·+ ct−1

ct
def
= load(st) · (clock(st+1)− clock(st)) (3)

where clock(st) is the wall-clock time upon entering state st. Notice
that it is in the solver’s interest to answer open queries: closing a
query will usually achieve a reduction in load, even if the driver
program reacts by issuing its next query (since the new query has
larger i and hence smaller γi than the query it replaces).6

6This would not be the case if we discounted the cost of action at in the
traditional way, by γt or γclock(st) rather than γi. In that case, when facing



Listing 4 Just as Listing 3 shows one strategy for an query task, here
we see one strategy for an update task—an additive weight update
“weight(dx,dy) += ∆w” when training the convolutional neural
net of section 1.1. This particular strategy chooses to propagate
the additive update through two rules, computing the additive
effect on various edge items7 and then on the in items reached
by those edges. This code does not itself modify the in items or
propagate the change to their descendants—instead, that work is
handled in the final line as a separate update task (which will get
to choose its own strategy when it is later popped from the agenda
and RUN). What are some alternative strategies? ¬ Execute the
final line’s task immediately via RUN(UPDATE, . . . ), instead of
deferring it via AGENDAPUSH(. . . ).  Change the final line’s update
to “in(hidden(x′,y′)) ← unknown”, which would invalidate the
memoized value of that item rather than incrementing it. Then
the memo no longer needs to be maintained, but must later be
recomputed from scratch upon lookup. ® A more aggressive strategy
would bulk-invalidate all memoized in(hidden(...)) values, rather
than iterating over just those hidden nodes that were provably
affected by the weight change as below. This is faster and may turn
out to work just as well, since in practice, almost all hidden nodes
will indeed be affected. ¯ Realize the entire loop “all at once” as a
matrix operation, shifting and scaling the out(input(. . .)) matrix
and adding it to the in(hidden(. . .)) matrix. This is possible for
portions of these matrices that are currently stored in dense arrays.

1: w[dx, dy] += ∆w . update the stored (memoized) weight
2: . now follow each input node’s updated outgoing edge to a hidden

node, and additively update the latter’s in(...) value
3: for (out(input(x,y)) 7→ o) in RUN(QUERY, out(I)) :
4: (x′, y′)← (x+ dx , y + dy)
5: AGENDAPUSH(UPDATE, “in(hidden(x′,y′)) += o ·∆w”)

Note that the solver has some interesting flexibility in how it
processes the stream. For instance, consider two extremes for update
handling. ¬ The solver can eagerly process all updates so that
subsequent queries have low latency.  The solver can buffer the
updates and lazily apply them only when they are needed to correctly
answer some query. This reduces the latency of current queries and
may wholly eliminate work that turns out to be unneeded.

To aid learning, Listing 2 measures how long strategies take to
execute. At time step t, the policy chooses a strategy at ∼ π(· | st)
to carry out some task. This choice takes time ct and advances
the time counter to t + 1, but the process of actually executing
strategy at may call subroutines that again consult the policy, so
that the strategy itself does not complete until some time t′ > t.
At that point, we can measure the total cost Ct′ − Ct of executing
strategy at, and estimate the value of the new state st′ , allowing us
to evaluate whether at was a good choice and thus update the policy.
See section 5 for details.

The MDP’s state space is astronomically large, since st includes
the current contents of the agenda and other data structures. To
help the policy π behave reasonably in states that the solver is
encountering for the first time, we will define it to depend on

a sequence of equal-urgency queries, the solver would have no incentive
to answer the current query faster merely in order to start working on the
next equally costly query—other than the benefit of finishing the entire
stream sooner, which would be negligible since the distant future is heavily
discounted. This is why we redefined (1) as (2). If we had started with the
“average-reward” variant of (1) (an elegant alternative metric that does not
use discounting), we would have correspondingly redefined it in (2) to use
the average cost per query, rather than per action.

7Our code in Listing 4 is somewhat simplified. It should only be called
if no edge items currently have memos, since the code as shown does not
check for such memos and update them.

features of the state-action pair, which characterize the salient
attributes of the decision.

For example, we can use a decision tree (section 4) or an
exponential family model,

π(a | s) ∝ exp
(
θ>f(s, a)

)
, (4)

where f(s, a) is a vector of features of the state-action pair, and θ
is a weight vector. θ can be learned by stochastic gradient descent
on a regularized version of ρ(π), as we explain in section 5. As
section 1.2 noted, the choice of strategy to handle a query or update
task might depend heavily on fast, superficial features of the names
of the items being queried and updated. However, a good policy
might also consult other features of s—e.g., to estimate the cost of
executing the strategy a given current data structures, or the impact
of executing a on the costs of likely future tasks.

The difficulties of reinforcement learning are primarily:

• Exploration-exploitation tradeoff: Our system is not told
which action is best in state st (in contrast to supervised learning
or imitation learning). It must try strategies often enough to find
out whether and when they work well. This means spending
some time on apparently dubious or trailing strategies.
• Credit assignment problem: Determining which actions are

responsible for delayed costs or rewards is difficult and may
require lengthy experimentation. Listing 2 measures the execu-
tion cost Ct′ − Ct of choosing a strategy at, but we are also
concerned with the impact on the future cost C∞−Ct′ . A strat-
egy might achieve small execution cost only by deferring much
work, making it responsible for large future costs when that
work is popped from the agenda. A strategy that memoizes the
results of its computation may achieve future cost savings when
those memos are used to save computation; at the same time,
it will also cost something to correct those memos if updates
make them stale. A good policy needs to consider these delayed
impacts when making a choice, so our reinforcement learner
should try to identify the actual impacts of its past choices and
distinguish them from confounds and noise.
• The road not taken: Credit assignment is ordinarily hard

because a reinforcement learner can only try one action at at
state t: it is unable to do a controlled experiment that compares
at with some other āt to get a paired sample. In our purely
computational setting, however, it would be possible in principle
to perform a controlled experiment, by forking the computation
or by rolling back to a checkpoint. More practically, because
we know the causal structure of our system, there are instances
where we can cheaply estimate how some cost ct+k would have
been different if we had taken āt instead of at. For example,
if we decline to save a computed value and later spend 20ms
recomputing it because it was unavailable (Megiddo and Modha
2003), then we know that we could have saved up to 20ms by
memoization (less if the memo would have required maintenance
or would have been flushed before it was needed).

3. Flexible Solution Strategies for Dyna
Conceptually, the Dyna solver operates over a computation graph
defined by the Dyna program. Each node is an item named by
a Prolog-style ground term (a term with no variables), and the
program’s rules define hyperedges that connect these nodes. A task
is a request to query or to update a set of nodes. This set can usually
be specified by a Prolog-style term, such as edge("b",T) (which
contains a variable T).

The solver is free to memoize (i.e., store) the value of any derived
item in the graph (speeding up future queries of that item and its
descendants). However, as long as this memo exists, the solver must



keep it up to date (slowing down future updates of its ancestors).
More generally, the solver can memoize the answer to any query.
Such stored-and-maintained query answers are better known as
database indexes. For example, the answer to edge("b",T) is a
traditional adjacency list of outgoing edges, which is useful for
computing shortest paths in the opening example of section 1.1.

The framework in the previous section allows the solver to
choose among strategies for each query or update task. A mode
is a class of queries or updates—an interface—for which we
may eventually generate a method that may dispatch to various
implementations. For example, one query mode allows any query
of the form edge(u,T) where u can be any ground string. To carry
out such a query, one would call the corresponding method with u
as an argument. A method always begins by consulting the policy
to choose a strategy appropriate to its arguments (or sometimes
just the parameters of a strategy); it then executes the strategy.8 A
strategy is a piece of code to accomplish the query or update task
for the method; it may call other queries and updates as subtasks.

The danger is that we may try to call a subtask that does not
fall into any mode for which we have a method—which would
be a runtime error.9 We thus check at compile time that we will
not get runtime errors for the modes that the Dyna programmer
has requested (declared). To be precise, a mode is supported if
the solver possesses a complete method for it. A complete method
is one that already knows how to handle all necessary subtasks: it
never attempts to call a subtask unless that, too, falls into a supported
mode. For any query or update mode that was explicitly declared
by the Dyna programmer, we are expected to ensure support by
constructing a complete method at compile time, which means
identifying at least one strategy whose subtask calls are guaranteed
(by static analysis) to fall into supported modes. The method may
stochastically try to extend itself with additional strategies when it
is called at runtime—but as it is supposed to be a complete method,
any added strategies must also be complete (or have fallbacks).

We aim to discover good strategies for the modes that arise
frequently. All strategies will be essentially specializations of
two flexible but incomplete generic methods, which use pattern-
matching (unification) against the rules of the program.10 The
generic QUERY method will attempt to implement the most general
query mode—handling any query at all—and resembles Prolog’s
backward-chaining strategy, SLD resolution (Kowalski 1974). The
generic UPDATE method will attempt to implement the most gen-
eral update mode—handling any update at all—by using forward-
chaining to refresh stale memos. This resembles semi-naive bottom-
up evaluation akin to Datalog (Ullman 1988; Eisner et al. 2005).
See Filardo and Eisner (2012, 2017a,b) for more discussion.

A generic method unifies the query or update against patterns
in the Dyna program rules, makes some nondeterministic choices,
and recurses to the resulting subtasks. The subtasks are constructed
by the unification and may be handled by calls to the generic meth-
ods. A strategy is obtained by specializing this generic method to

8We ordinarily call the method via RUN (Listing 2) so that the policy
will be updated based on what the strategy did and how long it took.

9Akin to Prolog’s “instantiation fault.” The problem is that built-in
items do not support all query modes. E.g., the trick of “running addition
backward” in Listing 3 requires us to query for values of X such that
X+ dx = x′. Luckily, in that example, addition is invertible and the built-in
implementation knows that the inverse is subtraction. However, operators
like max are not uniquely invertible and may not support such queries. Also
unsupportable are queries (and some updates) of an input item or random-
number item whose value has been discarded because it was no longer
needed to support the declared modes.

10For simplicity of presentation, the strategies in Listings 3–4 made use
of generic methods like QUERY to handle their subtasks, but in practice they
would use complete methods specialized to those subtasks.

¬ queries or updates of a particular mode,  the rules of a particular
Dyna program, and ® a particular branch for each nondeterministic
choice. These three specializations narrow the modes that are needed
for the subtask calls. This results in a possibly complete strategy
that is less flexible but more tightly optimized for its mode. To
generalize the method beyond this single strategy, we may restore
some of the nondeterminism: we generate code at the start of the
method that makes a probabilistic choice a among two or more
strategies, based on features of the current state s and their weights
θ. This code defines the policy distribution π(a | s,method, args).

If a user interactively attempts a novel kind of query or update
at runtime, we can try to generate a supporting strategy on demand.
Even when no complete strategy can be found, it is possible to
proceed hopefully—as a Prolog interpreter would—by calling the
generic method, invoking subtasks without knowing yet whether
they will be supportable. However, this may fail (a runtime error).

Even a complete strategy may fail to terminate on an infinite
or cyclic computation graph: it knows how to execute its subtasks
but it could generate infinitely many of them (either depth-first via
recursion or breadth-first via the agenda). Ideally, the solver should
detect that it is not making forward progress, and trigger execution
of an alternative strategy.11

We now discuss some of the options that are available to the
generic methods and thus also to their specializations.

3.1 Memoization and Forward/Backward Chaining
In many programs, such as Fibonacci in section 1.1, memoization of
some values is extremely important, reducing the runtime from ex-
ponential to polynomial thanks to dynamic programming. However,
as section 3 noted, memos also have costs—both spatial (memory
use) and temporal (creation, access, and maintenance). It is not
beneficial to memoize transient values that will never be queried
again or that can be quickly recomputed, such as σ(0.9453) in the
neural network example of section 1.1. Sometimes memoizing a
small fraction of items can be asymptotically effective in both time
and space (Zweig and Padmanabhan 2000; Gruslys et al. 2016).

A Dyna query method may choose to memoize (or continue
memoizing) the answer that it has just obtained, depending on the
query strategy chosen by π. Other methods could consult π to decide
how and when to flush an old memo, e.g., in lieu of updating it, or
during garbage collection or adaptive replacement.

Filardo and Eisner (2012) showed that a memoization policy
naturally gives rise to a continuum of hybrid execution strategies.
A query-driven or lazy solver collects updates to input items but
computes nothing until a query arrives, at which point it must
work backwards to the input items via more queries. An update-
driven or eager solver starts with the updates to input items and
immediately finds what it can compute from them, working forward
as far as it can via more updates. These traditional backward
and forward chaining strategies, respectively, can be viewed as
recursively querying unmemoized values and recursively updating
memoized values, using the same Dyna rules. Deciding to memoize
only some items gives rise to a mix of lazy and eager behavior. An
item’s chaining behavior depends on the memoization policy’s past
decisions and is not fixed in time.
π should decide not only whether to memoize a result, but in how

much detail and using what data structure. Choosing an compact but
useful data structure for future use is especially important for large
memos such as an index, which might be stored as a sorted list, a

11For example, rather than attempting to unroll an infinite left-recursive
loop, recursion can try a different subgoal ordering or guess a value and use
the agenda to schedule a future revisiting of this guess. Such a transition
in strategy does not guarantee convergence (the cycle might, for example,
attempt to count to infinity), but it increases the fairness (both disjunctive
and conjunctive) of the system by allowing off-cycle items to weigh in.



dense matrix, etc., with differing spatial and temporal consequences
(section 3.5). Even when memoizing a simple scalar value, it is
sometimes efficient to store the aggregands (e.g., summands) that
contributed to that value. This allows faster updates to the memo
when the set of aggregands changes slightly, e.g., using a Fenwick
tree (Fenwick 1994). Sometimes overhead can be reduced by storing
and maintaining only a few of the aggregands, enough to “justify”
the current value: so long as these so-called “watched” aggregands
do not change, the item’s value is immune to changes in other
aggregands (e.g., Moskewicz et al. 2001).

3.2 Prioritization
Listing 1 must choose which task to process next from the agenda.
The policy π can choose directly among available tasks, or it can
simply pop a high-priority task from a priority queue (or a set of
prioritized “bins”), where π was used earlier to choose the priorities.

It is legal to process tasks in any order, but some orders will do
less work and answer urgent queries faster. The question of how
best to prioritize forward-chaining updates, in particular, turns out
to be quite subtle and problem-dependent, which is why we would
like to use machine learning to seek a good problem-specific policy.

¬ One principle is that graph structure is important: popping the
nodes in a topologically sorted order ensures that each node will
only be updated once (barring further external updates). However,
the solver may not know a topologically sorted order, since the graph
may be large, with a data-dependent structure that is discovered only
as the solver runs. Moreover, the graph could be cyclic, in which
case no fully topologically sorted order exists.

 A competing principle is that updates that will not (strongly)
affect the results of open queries should be delayed or omitted. This
has motivated A∗ search heuristics, magic set transformations, and
heuristics like residual belief propagation (Elidan et al. 2006).

These two principles may be summarized as ¬ “pay attention
to items’ names” (which are presumably correlated with the graph
structure) and  “pay attention to the state of the solver” (including
the values of items, the size of updates, and the activity of open
queries). In principle, the policy π can learn how to pay attention to
both. Specifically, π can use (4) to convert a linear scoring function
on tasks to a probability distribution π(a | s) over the agenda tasks.

3.3 Subgoal Order and Rule Order
Dyna is a pure language, like Datalog (Ceri et al. 1989), in that
subgoals—the query patterns on the right-hand-side of a rule—
have no side-effects. This allows us to visit and instantiate rules in
arbitrary order, and to use any strategy for joining a rule’s subgoals,
without affecting program semantics.

Rule ordering exposes traditional “short-circuit evaluation” op-
portunities: An item aggregated by logical OR, having discovered a
true aggregand, may cease looking for additional aggregands. This
generalizes to other absorbing elements of other aggregators. If an
item is likely to have absorbing aggregands, the policy should learn
where to look for those, in hopes of finding them quickly. 12

Within the right-hand side of a rule, selecting an order for the
subgoal queries corresponds to choosing a loop nesting order, and
may have large impact on runtime performance.As a simple example,
consider the inner product rule a += b(X) * c(X). If b is a large,
dense weight vector, while c is a sparse vector of features, then
taking c as the outer loop is far more efficient: probing for a few
points in b beats probing for (and usually missing) a lot of points in
c. Dunlop et al. (2010) shows a more surprising example where a
non-standard three-way join order turns out to give a large speedup

12It may also be possible to find and exploit short-circuiting opportunities
among the items within a rule, though the details are more complicated than
across rules.

in context-free natural language parsing. To choose wisely among
subgoal orders (consistent with mode constraints), or to estimate
their relative cost as a guide to learning, the policy will need to find
features that correlate with the runtime, perhaps including actual
cardinality estimates from hyperloglog (Flajolet et al. 2007).

3.4 Inlining Depth
The most obvious quantum of work for the solver would be the
propagation of a query or an update through a single Dyna rule.
While scheduling those quanta would preserve flexibility at runtime,
we can reduce overhead by grouping them into larger tasks.

When a strategy needs to call another method, the code generator
has three options, which give rise to different variants of the strategy.
(As usual, the policy can learn to choose among these strategies.)
¬ Generate an AGENDAPUSH instruction to enqueue the method
call as a new task on the agenda (where it can be prioritized with
respect to other tasks, consolidated with other similar tasks, or
picked up by a different compute device).  Generate a RUN
instruction to immediately call the method as a subtask (which
bypasses the overhead of the agenda). ® Copy the code from one
of the method’s strategies (which bypasses the overhead of calling
π to choose a strategy at the start of the method). That inlines the
subtask into the present strategy, which allows local optimizations
across the task-subtask boundary.

Option ® is at work in the strategies Listings 3–4, each of which
propagates through two rules (relating in to edge to weight). These
listings also use approaches ¬ and  at other subtask boundaries.

3.5 Task Structure
The Dyna programmer can, of course, write a program in terms of
large objects such as matrices. A single matrix multiplication is a
large and coherent task.

However, what if the Dyna programmer chooses to describe the
same computation with many small scalar operations? Then another
option for the solver is to form larger and more efficient task units. In
particular, consider a group of related tasks—such as incrementing
the weights of all existing items of the form edge("b",u), either by
the same value or by different values depending on u. It is typically
more time-efficient to handle these tasks all at once (especially when
using parallel hardware such as GPUs or vector units of CPUs).
Storing them jointly is also more space-efficient because we do not
have to store the repeated structure many times.

To discover related tasks and group them into a single vectorized
task, there are three possibilities: ¬ Some tasks may be “born” this
way, because a strategy runs a loop that generates many related
tasks, and the strategy chooses to package them up as a vectorized
task.  By indexing or partitioning the agenda, we can consolidate
related tasks as they are pushed. ® When a device pops tasks from
the agenda (Listing 1), it can scan the agenda for related tasks to run
in parallel.

Answers to subgoal queries may also be vectorized. In gen-
eral, vectorized objects can be represented in multiple ways: (re-
peated) keys and aggregands, ground keys and associated aggregated
value, disjoint non-ground keys, defaults (as per Filardo and Eisner
(2017b)), sorted collections, etc. Specialized structures allow for
specialized strategies, such as Baeza-Yates (2004)’s algorithm for
intersection of two sorted sets.

3.6 Source-to-Source Transforms
Dyna programs are amenable to a number of “source-to-source”
transformations (Eisner and Blatz 2007) which can precede, and may
facilitate, code generation. These transforms offer forms of inlining,
common sub-expression elimination, and other forms of program
refactoring. In some cases they improve asymptotic complexity.



4. Decision Tree Policies and Stable Policies
As section 1.2 noted, a method should be able to choose a strategy by
applying a few simple and fast tests, as in a decision tree. Garlapati
et al. (2015) show that learning a decision tree for classification can
itself be elegantly treated as a reinforcement learning problem. A
state of their MDP corresponds to a node in a conventional decision
tree. It records the results of all tests that have been performed so
far on the current input. Their classification agent must then choose
among actions: it can either output a specific class (and stop) or
perform a specific new test (and transition to a new state according
to the result). If the agent’s policy π made a deterministic choice at
each state, then it would act like an already-learned decision tree,
with each state corresponding to a leaf or internal node according to
whether the agent outputs or tests in that state. However, since the
MDP is still learning what to do at each state, it acts like a random
mixture of decision trees. Over time, it learns to favor decision trees
that get high reward (accurate outputs) at low cost (few tests).13

Classifying Dyna’s structured names imposes some restrictions
on test order. E.g., not all names have a second argument, and those
that do may store that argument in different places. So a method that
tests the second argument of edge(u,t) should only be called by a
method that knows the functor to be edge, from a previous test.

We can embed Garlapati et al.’s classification method—RLDT—
into Dyna’s control method, using it to select strategies. Listing 2,
line 3, is in fact designed to do this. To RUN one of our methods
is to visit one of RLDT’s states. This is why our policy π(at |
st,method, args) conditions on the method. The method’s args
(perhaps together with the full remaining state st of the Dyna
solver) provide the test results, so they correspond to RLDT’s input
example. The method immediately samples the action at, which
may specify either ¬ a code strategy to actually carry out the subtask
(corresponding to one of RLDT’s output actions),  a random choice
of appropriate method to be RUN recursively, ® a random choice of
test (some “if” or “case” statement) whose result (on args or st) will
deterministically select an appropriate method to be RUN recursively.
The recursive cases will immediately consult the policy again.

Stable policies: There is one important setting where it is neces-
sary to make random policy decisions in a repeatable way. Many
different dictionary data structures could be used to store memos:
for concreteness, suppose we have just a prefix trie A and a two-
dimensional array B. In keeping with our usual “mixed strategy”
approach, the reinforcement learner should gradually shift to using
whichever one is more efficient. However, if we choose A to store
the memo for item x, we should not later look x up in B. We must
always make the same decision for x.

We still use a decision tree policy to place x. However, here the
policy may not look at the transient state st, but only at the name
of x. Furthermore, rather than drawing a random number, we treat
the hash code of the name x as if it were a uniform random variate.
This ensures stability: if π(A | x) = 0.3, we have a 30% chance of
placing x in A (determined by the choice of hash function), and will
do so consistently.

Although hash(x) remains stable, there is still a difficulty that
π(A | x) may shift to (say) 0.2 during learning. This means that if x
had hash code 0.25, it should now migrate from A to B. To avoid this,
we can take a snapshot π′ ← π of the A-versus-B policy, and con-
tinue to act consistently according to π′ even as π continues to learn
(see section 5.3 for details). At some point, when π has diverged
substantially enough from π′, we take a new snapshot π′′ ← π. A

13As an extension of this method, we believe, one could learn to include
only a high-reward, low-cost, dynamic subset of the features in a linear
scoring function (cf. Strubell et al. 2015; He et al. 2016). Such functions are
needed for reward estimation r̂(s, a) in section 5.4, and for policies based
on exponential-family distributions like (4) rather than decision trees.

background thread visits all memos in A and B and copies each to
the other data structure if π′′ says it belongs there, marking the origi-
nal copy for later deletion. After this migration, the solver switches
to acting according to π′′, and the background thread is free to delete
the marked copies. During the migration, queries and updates still
act according to π′, but updates to a memo in one data structure
must also update the copy (if any) in the other data structure.

5. RL Algorithms
In this section, we will outline one plausible candidate approach to
optimizing the long-term cost (2). Our goals are as follows:

• Support online learning, including in the “non-episodic” case
where the learner does not run the program multiple times, but
must adapt during a single very long run.
• Learn a simple fast policy π that can make each decision using

only a few features relevant to that decision, such as simple tests
on the arguments to a method call. (Thus, π should not have to
estimate the entire future cost as in Q-learning or SARSA.)
• When updating the policy, however, incorporate explicit estima-

tors of quantities such as the execution cost of a strategy. These
estimators should also be fairly fast to train and use.14

• Update the policy probability of strategy at at time t′ (Listing 2,
line 6), immediately after executing it and observing its actual
execution cost—without the bookkeeping of measuring its actual
impact on future cost C∞ − Ct′ .
• Instead, estimate the expected future cost following at using

appropriate domain-specific features, such as the number and
types of memos and tasks in state st′ .

5.1 Cost Estimation
As a warmup, we first adapt the Expected SARSA algorithm (van
Seijen et al. 2009) to our setting. Following standard notation, we
use the shorthand s = st, a = at, r = ∆C

def
= Ct′ − Ct, s′ = st′ ,

a′ = at′ . The standard algorithm15 takes t′ = t + 1, but then r
is the cost ct of action at alone. Our formulation from section 2
and Listing 2 instead takes t′ to be the time upon completing the
execution of the strategy selected at at, so that r measures the total
cost of selecting and executing the strategy.
Qπ(s, a) is defined to be the expected long-term (discounted)

cost if we start in state s, select strategy a, and follow π thereafter.
In the classical formulation (1) of long-term cost, we would define

Qπ(s, a)
def
= E

[
∞∑
t=1

γt ct

∣∣∣∣∣ s1 = s, a1 = a

]
(5)

Given our revised formulation (3) of long-term cost, we omit γt

because discounting is now included within the definition of ct:

Qπ(s, a)
def
=

1

γI(s)
· E

[
∞∑
t=1

ct

∣∣∣∣∣ s1 = s, a1 = a

]
(6)

where I(s) is the number of external queries that arrived prior to
state s, some of which may still be contained in the setO(s) of open
queries (so the next external query will be numbered i = I(s)+1).16

14Training will nonetheless slow down execution. The previous bullet
point tries to ensure that running the policy is fast once we are no longer
training. If we never want to stop training, we can still speed up execution as
the policy converges by (intelligently) subsampling a subset of time steps on
which to compute parameter updates.

15The standard formulation also takes r and Q to be rewards to be
maximized, whereas for us they are costs to be minimized.

16The need to divide by γI(s) is a subtle point. Otherwise Qπ(s, a)
would be very small for states s with large I(s), as the summed costs



By writing the expectation within (6) as a recurrence, we obtain

Qπ(s, a) = E
[
r + γI(s

′)−I(s) ·Qπ(s′, a′)
]

(7)

where we have redefined r def
= ∆C/γI(s). (Our previous redefinition

r
def
= ∆C dealt with our generalization that allowed t′ 6= t+ 1, but

not with our revised long-term cost.) We further rewrite as

Qπ(s, a) = E
[
r + γI(s

′)−I(s) · Vπ(s′)
]

(8)

where Vπ(s)
def
= E

ā∼π(·|s)
[Qπ(s, ā)] (9)

While executing policy π, we can use temporal difference updating
to improve parametric approximations Q̂, V̂ to the functionsQπ, Vπ .
We measure the current error of Q̂ by Es,a,r,s′ [ 1

2
(Q̂(s, a) − q)2]

where q def
=
(
r + γI(s

′)−I(s) · V̂ (s′)
)

is the “target” value. The

error derivative with respect to Q̂(s, a) is Es,a,r,s′ [Q̂(s, a) − q],
and we can get an unbiased estimate by observing the temporal
difference δ def

= Q̂(s, a)− q on any tuple (s, a, r, s′). Thus, tuning
the parameters of Q̂ by stochastic gradient descent simply tries
to move Q̂(s, a) closer to q. Similarly, we can tune V̂ using the
estimated derivative V̂ (s)− q, moving V̂ (s) closer to q.

5.2 Policy Learning
SARSA learning would define the policy π(a | s) in terms of
Q̂, placing high probability on actions a with low estimated cost
Q̂(s, a). Thus, updating Q̂ would automatically update the policy.

We instead propose to use Q̂ as a signal to train the parameters
of a separate, decoupled policy π (Sutton et al. 2000; Bhatnagar
et al. 2007). Our rationale is that while Q̂ may need to use complex
features of s (such as the contents of the agenda) to estimate the
entire future cost, π only needs to choose among a few strategies
for a given method. Thus π can have a much simpler form in terms
of features locally available to the method call, making it fast.

Our stochastic policy π will be smoothly parameterized by θ.
The policy gradient theorem (Sutton et al. 2000, Theorem 1) states

∇θρ(θ) = E
s∼dπ(·)
a∼π(·|s)

[Aπ(s, a) ∇θ log π(a | s)] (10)

where ρ(θ) is the long-term discounted cost (3), dπ is the (stationary)
distribution of states visited by the policy π, and Aπ(s, a)

def
=

Qπ(s, a)− Vπ(s) is the advantage of action a in state s.
In theory, we could estimate (10) by Monte Carlo, sampling one

or more states s from dπ . In practice, RL algorithms approximate
such sampling by taking s to be consecutive samples along an
execution path.17 In our case, this means running Listing 1 with
policy π to see which states st it encounters and which actions
at it takes. Replacing Aπ(s, a) with the approximation Â(s, a)

def
=

ct are then heavily discounted. The division not only corrects for this,
but also means that Q-values tend to be large in states s that have many
queries that have long been open, so these important states will dominate
SARSA’s least-squares estimation of Q as well as the policy gradient (10).
The formal reason for the division is as follows. If s1 were truly the start
state of the Dyna solver, then of course we would have I(s1) = 0 and
O(s1) = ∅. However, the formal definition of long-term cost ρ(π) involves
an expectation over “start” states s1 that were drawn from the stationary
distribution of the MDP under policy π, and some of these may have past
queries. Dividing by γI(s) treats these notional start states in a consistent
way. It is analogous to the fact that even if a is the 51st action in the sequence
and thus its cost should be weighted by γ51, equation (5) weights it by γ1,
in effect dividing by γ50 where 50 is the number of previous actions.

17This means samples are correlated, as well as incorrectly distributed
because the path has not yet reached the stationary distribution dπ .

Q̂(s, a)− V̂ (s) from the previous section, we obtain the following
approximate stochastic gradient update to θ at time t:

θ ← θ − ηt · Â(st, at) ∇θ log π(at|st) (11)

where ηt is an optimization stepsize. In short, Listing 2, line 6,
should first update the parameters of Q̂ and V̂ as described in the
previous section, and then use equation (11) to update the parameters
θ of π. Intuitively, the latter update aims to increase π’s future
probability of again choosing at in state st if and only if at’s cost is
now estimated to be lower than average, i.e., Q̂(st, at) < V̂ (st).

5.3 Learning Off-Policy
In section 4, we faced a scenario where we had to sample actions
according to an older policy π′, fixing π′ for a period of time.
However, we would like to continue to train Q̂, V̂ , and π by
stochastically following the same gradients as if we had been
sampling from π.

This can be done by importance reweighting. Basically, when
we have followed a path under π′ that would have been more
(or less) likely under π, we should correspondingly upweight (or
downweight) the resulting updates. As we follow the path under π′,
we maintain its cumulative importance weight ωt = ωt−1 · π(at|st)

π′(at|st)
at all times t, where ω0 = 1. For the updates at time t′ (Listing 2,
line 6), the stochastic gradient formulas in the previous two sections
must be corrected by multiplying them by ωt′ .

5.4 Estimation by Linear Regression

We must train an estimator V̂ (s) of expected future cost. Many
estimator families are possible, but a simple one would be the linear
functions (load(s) · w)>Φ(s), where w is a vector of trainable
parameters and Φ(s) is a vector of numerical features synthesized
by the Dyna compiler (including a bias feature). Φ can be efficiently
maintained as the solver runs, using sparse incremental updates.

For example, a feature Φk(s) might count the number of tasks on
the agenda that use method k, so load(s) ·wk should estimate the to-
tal discounted future cost of those tasks and their progeny. Or Φk(s)
might count how many memos currently exist of a certain kind, in
which case load(s) · wk would represent something like the future
incurred cost minus future saved cost per memo (hopefully < 0).

Since ct is proportional to load(st), we have included a factor
of load(s) in our cost estimator, on the theory that a higher load at
present predicts a proportionately higher load when the tasks are exe-
cuted. That is plausible if the tasks that contribute most to V̂ (s) will
be executed soon (which is likely because of temporal discounting).

We can model Q̂(s, a) by explicit lookahead to V̂ (s′), as
suggested by equation (8). That is, we use the linear function

Q̂(s, a)
def
= 1 · r̂(s, a) + (load(s) ·w)>Φ̂(s, a) (12)

where r̂(s, a) is itself an estimator that is explicitly trained to predict
the execution cost r = ∆C/γI(s) in equation (8), and Φ̂(s, a) is an
estimator that is explicitly trained to predict the reweighted future
feature vector Φ̃(s′)

def
= load(s′)

load(s) · γ
I(s′)−I(s) ·Φ(s′). Provided that

these two estimators are unbiased, then (8) automatically holds
between the estimates; Q̂ has no other parameters to tune.18 In

18As for V̂ , notice that the step that tunes its parameters w to improve
(9) (end of section 5.1) will try to bring (load(s) · w)>Φ(s) closer to
q = r + (load(s) ·w)>Φ̃(s′). Rearranging, this is equivalent to bringing
w>(load(s)·(Φ(s)−Φ̃(s′)) closer to r, which is actually just online linear
regression—the learner tunes w to predict the observed execution cost r from
an observed vector of feature differences, load(s) · (Φ(s)− Φ̃(s′)). Why?
Intuitively, taking action a reduced the future cost by r, while also reducing
the feature vector Φ. Since the weights w are supposed to predict total future



practice, observing that Φ̃(s) = ( ∆load
load(s) + 1) · γ∆I · (Φ(s) + ∆Φ),

we can define our prediction Φ̂ to take the same form, using separate
estimators of the feature change vector ∆Φ

def
= Φ(s′)−Φ(s) and

the changes to the open queries, ∆I
def
= I(s′)− I(s) and ∆load def

=
load(s′)− load(s). Linear regression estimators of r and these ∆
values can consult a and the features Φ(s), and can be trained online,
using supervised observations that are available at time t′.

We suspect that we can make this design fast even when Φ
includes many features. The key point is that most actions have
limited ability to change the state: hence the actual feature change
∆Φ and our predicted change ∆̂Φ(s, a) will both be sparse vectors.
As a result, computations like Â(s, a) (needed by (11)) are similar
across nearby timesteps and can share work. It also follows that
updates to linear regression weight vectors (including w—see
footnote 18) will themselves tend to be sparse, either in the sense
that they are mostly zero or in the sense that they are mostly identical
to a scaled version of the previous update. Hence we can use sparse
vector updating tricks (Carpenter 2008), including storing explicit
scalar multipliers and using timestamping to defer repeated similar
updates so that they can be performed as a batch. Indeed, applying
such tricks automatically to user programs is one goal of Dyna.

6. Related Work
Adaptive performance tuning is not a new idea. Branch prediction
is widely used in both compiler and JIT optimizers. Database query
optimizers use adaptive cost estimates (Deshpande et al. 2007).

Performance Portability: Performance improvements on one
computer do not necessarily generalize to other architectures or all
workloads. A portable performance community has formed around
the idea of tuning software to be as fast as possible on a given
computer. Auto-tuned numerical libraries are popular and pervasive,
such as ATLAS (Whaley et al. 2001), PhiPAC (Bilmes et al. 1996)
and FFTW (Frigo and Johnson 1998). Another success story is an
auto-tuned sorting library (Li et al. 2004). The name of the game
is adapting low-level implementation details to specific hardware.
These details include loop {order, tiling, unrolling} and whether to
use instruction-level parallelism.

These libraries are usually tuned offline by generating and
benchmarking many variants. There is no reinforcement learning in
the sense of a single system that gradually tunes its strategy as it runs.

Like our methods, the methods in these libraries may support
multiple strategies. Like our actions, they try to dispatch a method
call to the best strategy (algorithm configuration) based on features
of the arguments to the call, such as matrix dimensions. However,
their dispatch policy is tuned offline.

Tuning Declarative Solvers: Hutter (2009) used black-box opti-
mization techniques to tune the parameters of solver heuristics for
mixed-integer programming solvers and satisfiability solvers to opti-
mize efficiency for specific problem workloads. This approach won
several competitions, which demonstrated the effectiveness of tun-
ing solvers to a specific workload. Hutter focused on offline tuning,
where the solver is treated as like a black-box that can be repeat-
edly called with different parameters and problem instances. In this
way his work resembles the performance portability work above,
although it focuses on tuning to a workload rather than to a platform.

Database Query Optimization: Cost estimation strategies often
make very weak statistical assumptions about the database con-
tents, generally falling back to crude models based on independent
uniform distributions. These choices are made for both efficiency

cost V from Φ (after all, V̂ (s)
def
= w>(load(s) ·Φ(s))), it is intuitive that

they should also predict each action’s V reduction from its Φ reduction—
and that is how temporal difference learning achieves training of w.

and to serve as a good default strategy when domain knowledge
is not available. However, Tzoumas et al. (2013) use probabilistic
graphical models as a sophisticated approach to query selectivity
estimation, which can capture richer correlations between variables
in a complex filtering function (predicate).

Tzoumas et al. (2008) applied RL to query planning by training
a policy to select among join and filter orders within the Eddies
algorithm (Avnur and Hellerstein 2000). This is similar to how we
will explore different loop order strategies inside our methods.
Database Configuration: Database configuration is traditionally
an offline problem (Basu et al. 2016), which is accomplished with
an expert in the loop. This is often done with the aid of database
administrator tools, such as a “what-if optimizer” that predicts the
utility of adding or dropping an index (Chaudhuri and Narasayya
1998). However, Basu et al. (2016) describe an RL approach to
learning dynamic policies for database configuration, including
which indexes to build and drop. Their approach takes database
configurations as states, changes to the configuration as actions,
and minimizes the long-term expected future cost under a given
dynamic workload. This is rather similar to our approach to data
structures, except that we usually pursue a mixed configuration and
shift gradually, rather than switching abruptly from one to another.
Data structure selection and tuning: The semantics of a data
structure are traditionally specified as an abstract data type (ADT),
which is a specification of a data structure as a set of operations it
must support, which have well-defined semantics. In just this way, a
Dyna program can specify a set of supported queries and updates
and their semantics. The Dyna solver then provides a flexible, self-
tuning implementation of this ADT.

There are other examples of self-tuning implementations for
more specific ADTs. Many applications find that a custom-written
dispatch policy that selects among several implementations can
significantly improve performance. In addition, data structures can
have control parameters that allow them to pursue mixed strategies
(as in our design), interpolating between certain extremes.

A great example of self-tuning control parameters is the adaptive
replacement cache (ARC) (Megiddo and Modha 2003)—a fixed-size
cache data structure with a clever adaptive policy that determines
what to evict from the cache to optimize the hit rate (frequency
that a requested item is in the cache). This relates to our problem
of deciding what to memoize (although we also face the additional
problem of maintaining memos). Another example is SmartLocks
(Eastep et al. 2010), a reinforcement learning mechanism for self-
tuning locking mechanisms in parallel applications.

7. Conclusion
Dyna is a general-purpose language that allows a programmer
to synthesize computation graphs. Such a graph defines how to
compute and maintain derived data. At an abstract level, this is the
focus of all machine learning systems. We intend Dyna as a practical
vehicle for concise declarative specification of real-world machine
learning computations.

Our previous Dyna implementations (solvers) used homogeneous
strategies to compute, store, and maintain data items. However, a
solver has considerable flexibility (Filardo and Eisner 2012) about
how to store the derived data and when and how to handle queries
and updates. These provide a range of optimization opportunities.
In this paper, we have outlined a possible reinforcement learning
architecture for exploring a mix of strategies at runtime, shifting
probability toward strategies that seem to have lower long-term cost.
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